

Engineering Report

November 3, 2022 Revised December 12, 2022 Revised January 6, 2023 Revised February 6, 2023 Revised February 10, 2023

Prepared For

Piage Management Corp 49 Plains Road Essex, Connecticut 06426

Prepared By

Doane Engineering P. O. Box 113 Centerbrook, Connecticut 06409

Table of Contents

Section	Page No.
1.0 Introduction	Page 1
2.0 Hydrologic Model Development	Page 2
3.0 Stormwater Management System	Page 3
4.0 Sanitary System Design Information	Page 5

Appendices

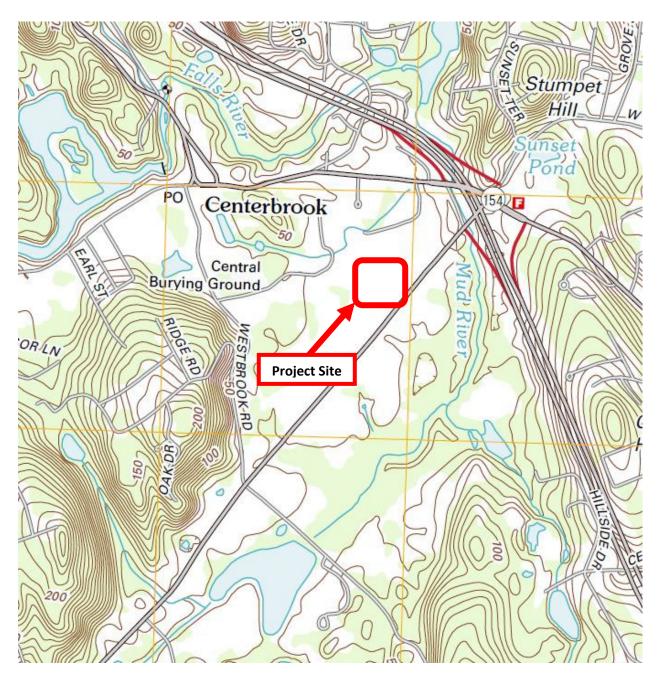
Appendix A: Design Computations

Appendix B: Hydrologic Model Input Data and Results

Appendix C: Pipe Capacity Calculations

Appendix D: NCRS Soils Information

Appendix E: NOAA Atlas 14 Precipitation Information


Appendix F: Domestic Water Usage Data

Appendix G: Groundwater Monitoring Data

Appendix H: Soil Infiltration Rates

1.0 Introduction:

This Engineering Report has been prepared on behalf of Piage Management Corp. who is seeking approval for the development of an approximately 2.0-acre parcel located in the central portion of Essex. The parcel is located at 49 Plains Road (Conn. Route 153) in the Town of Essex, Connecticut. Please see Figure 1 for a location map.

Figure 1. Project Location U.S.G.S Essex Connecticut Quadrangle

The planned development proposal consists of the construction of a new 10,125 sf. warehouse to the rear of the existing 4,750 sf warehouse. Additional site improvements include driveways, parking areas, utility services, on-site wastewater system, landscaping, and stormwater management facilities.

The project site is located primarily within the Limited Industrial (LI) Zoning District. The access way to the site is in the Business District (B). The existing land used adjacent to and in the vicinity of the site is residential and commercial. The property is currently used as a warehouse that is occupied by Cross Island Provisions.

The site is served by the Connecticut Water Company public water system, public communication, and electric utilities located within the Plains Road Right of Way.

Surface runoff from the site currently drains to a small wetland located in the southeast corner of the site. This wetland discharges to a swale towards Plains Road and an 18" pipe crossing under Plains Road. The runoff ultimately discharges to the Mud River.

Surface runoff from the developed site will be collected by an on-site drainage system and detained in above ground and underground storage onsite. The proposed stormwater management system will continue to direct stormwater to the on-site wetland.

The site is not located within a flood zone per FIRM Community Panel Number 090065 0331 G map effective date 08-28-2008.

The site is located with the Water Resource Protection Area.

The site is not located within Aquifer Protection Area or identified Connecticut Department of Energy and Environmental Protection Diversity Database Area.

The Natural Resources Conservation Service Soil Survey of the State of Connecticut indicates that the uplands surficial soil type on the site is classified as Ninigret-Urban Land Complex 0%-5% Slopes (221A)

The site contains 0.06 acres of inland wetlands and 0.5 acres of upland review area.

The total area of land disturbance associated with the completed project construction activities is approximately 1.7 acres. The approximate area of disturbance within the upland review area is 0.4 acres.

2.0 Hydrologic Model Development:

The site stormwater management system has been designed in accordance with standard hydrologic and hydraulic engineering practices. HydroCAD Version 10.10 (Hydrologic Modeling Software 9 HydroCAD Software Solutions, LLC) was used to create the Hydrologic models and estimates of peak rates of discharge and volumes of runoff. The U.S. Department of Agriculture Soil Conservation Service (now Natural Resources Conservations Service) Technical Release 20 Computer Program for Project Formulation Hydrology Methodology was used within the HydroCAD software program. TR-20 is a single event, lumped parameter surface water hydrologic model that simulates the precipitation-runoff relationships of a drainage area. The model used the Soil Conservation Service Curve Number and Unit-Hydrograph Methods to represent infiltration losses and to transform excess precipitation into runoff, and the Modified Plus (Storage-Indication) Method to perform reservoir routing.

NOAA Precipitation Frequency Atlas 14 for the Northeastern States 24-hour rainfall depths in the project site vicinity shown in Table 1 were accessed from the NOAA Precipitation Frequency Data Server and entered into the model.

Recurrence Interval Year	Rainfall Depth Inches
2	3.44
10	5.20
25	6.31
50	7.13
100	8.01

Table 124-Hour Rainfall Depths for the Project Site Vicinity

Partial duration series precipitation frequency data was also accessed from the NOAA Precipitation Frequency Data Server and entered into the models to create a synthetic rainfall distribution specific to the project site vicinity.

Catchment area boundaries where delineated using the existing conditions mapping for the site. The delineations were checked and adjusted based on a field inspection.

Antecedent Moisture Condition II was used to represent the soil moisture condition in the catchment areas prior to the modeled rainfall events.

3.0 Stormwater Management System:

The site stormwater management system consists of an underground stormwater detention area, 2 above ground detention areas, and the associated collection system. The system has been designed to reduce the peak discharge from the site.

The storm drainage pipes have been sized to accommodate the 25-year storm. All discharges from the stormwater detention basins have been sized to accommodate the 100 year storm.

The above ground stormwater basins and underground infiltration basin have been designed to meet the water quality volume and annual groundwater recharge volume requirements of the Connecticut Department of Energy and Environmental Protection Stormwater Quality Manual for the developed site.

All catch basins will have 4' sumps and hooded outlets to help with debris collection and water quality.

Infiltration will be used in the underground basin. The basin has been designed to have 3' separation from the seasonal high ground water level (infiltration tests have been performed with the results shown in appendix H). A layer of unstable material was found from approximately elevation 36.0' to 34.0'. This material will be removed from the area under the infiltration basin and replaced with a material having a minimum infiltration rate of 4" per hour. To include a factor of safety, an infiltration rate of 1" per hour has been assumed in the storm water model.

The storm water management system provides attenuation of the peak discharge rates in addition to matching the 24 hour total storm water discharge from the developed site. A summary of the rates of peak discharge, reservoir elevations, and the 24-hour storm water flows are shown below.

Storm	Existing Peak(cfs)	Proposed Peak (cfs)	Change Peak (cfs)	Existing 24 Hour(af)	Proposed 24 Hour (af)	Change 24 Hour (af)	Basin 20S Elevation	Basin 21SA Elevation	Underground 22SB Elevation
1 Year	1.76	0.46	-1.3	0.14	0.13	-0.01	33.64	37.42	37.61
2 Year	2.35	0.96	-1.39	0.20	0.19	-0.01	33.8	37.43	37.74
5 Year	3.37	1.95	-1.42	0.30	0.29	0.00	34.07	37.43	38
10 Year	4.25	2.59	-1.66	0.39	0.38	-0.01	34.26	37.44	38.28
25 Year	5.49	3.15	-2.34	0.53	0.52	0.00	34.49	37.45	38.5
50 Year	6.42	4.57	-1.85	0.63	0.63	0.00	34.63	37.45	38.58
100 Year	7.41	6.64	-0.77	0.75	0.75	0.00	34.74	37.46	38.67

Table 2: Peak Discharge Reservoir Elevations and 24-Hour Storm Water Flows

5.0 Sanitary System Design Information:

The sanitary system has been designed based on water usage data collected from June 2019 through September 2022 by Connecticut Water Company. The calculated daily use of the existing warehouse business is 144 gallons per day. This is calculated excluding 2 outlying data points on 3/7/2022 and 3/9/2022. It is assumed that a leak caused this data to not be in line with the other water data collected.

Cross Island Provisions currently has 15 employees, 8 office staff and 7 delivery drivers that are on the road the majority of the day. Upon completion of the new warehouse building, it is estimated that the business will have 30 employees. Based on the average daily water usage of 144 gallons and the current number of employees (15) it is estimated that 10 gpd are generated by each employee.

144 gallons / 15 employees = 10 gallons per day per employee

A safety factor of 1.5 can then be applied, bringing the 10 gpd to the estimated design flow of 15 gpd per employee.

10 gallons per day per employee X 1.5 safety factor= 15 gallons per day per employee

It is estimated that once construction is completed, Cross Island Provisions will occupy both of the warehouse spaces and have 30 employees. Therefore, the total design flow can be calculated at 450 gallons per day.

15 gallons per day per employee X 30 employees = 450 gallons per day

Below is the full sanitary system design calculation.

```
DESIGN FLOW = 450 GPD (BASED ON WATER USAGE DATA)
PERCOLATION RATE = 1.0-10.0 MIN/IN
APPLICATION RATE = 1.5 GAL/SF/DAY
REQUIRED EFFECTIVE LEACHING AREA = 450/1.5 = 300 SF
PROVIDED 1 - 60 LF ROWS OF GST 6212
EFFECTIVE LEACHING AREA PROVIDED =
1 X 60 LF X 10.0 LF/SF = 600 SF
MINIMUM LEACHING SYSTEM SPREAD (MLSS)
DEPTH TO RESTRICTIVE LAYER = 38 INCHES
(BASED ON GROUND WATER MONITORING TP-10)
SLOPE= 1.0 %
HF= 36
FF= 450/300 = 1.5
PF= 1
MLSS REQUIRED = 36 X 1.5 X 1 = 54 LF
MLSS PROVIDED = 1 ROW X 60 = 60 LF
```

<u>Appendix A</u> Design Computations

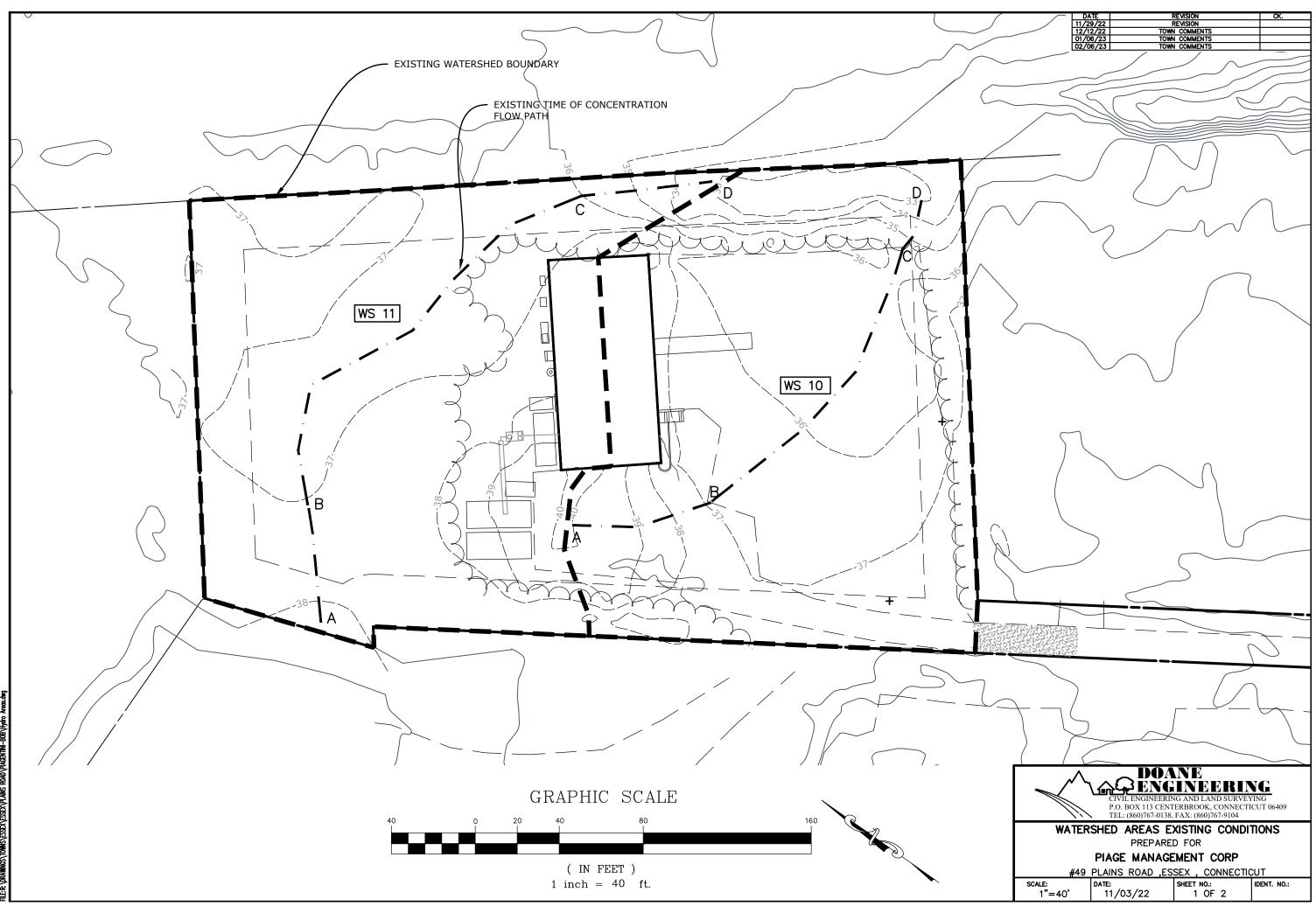
Water Quality Volume

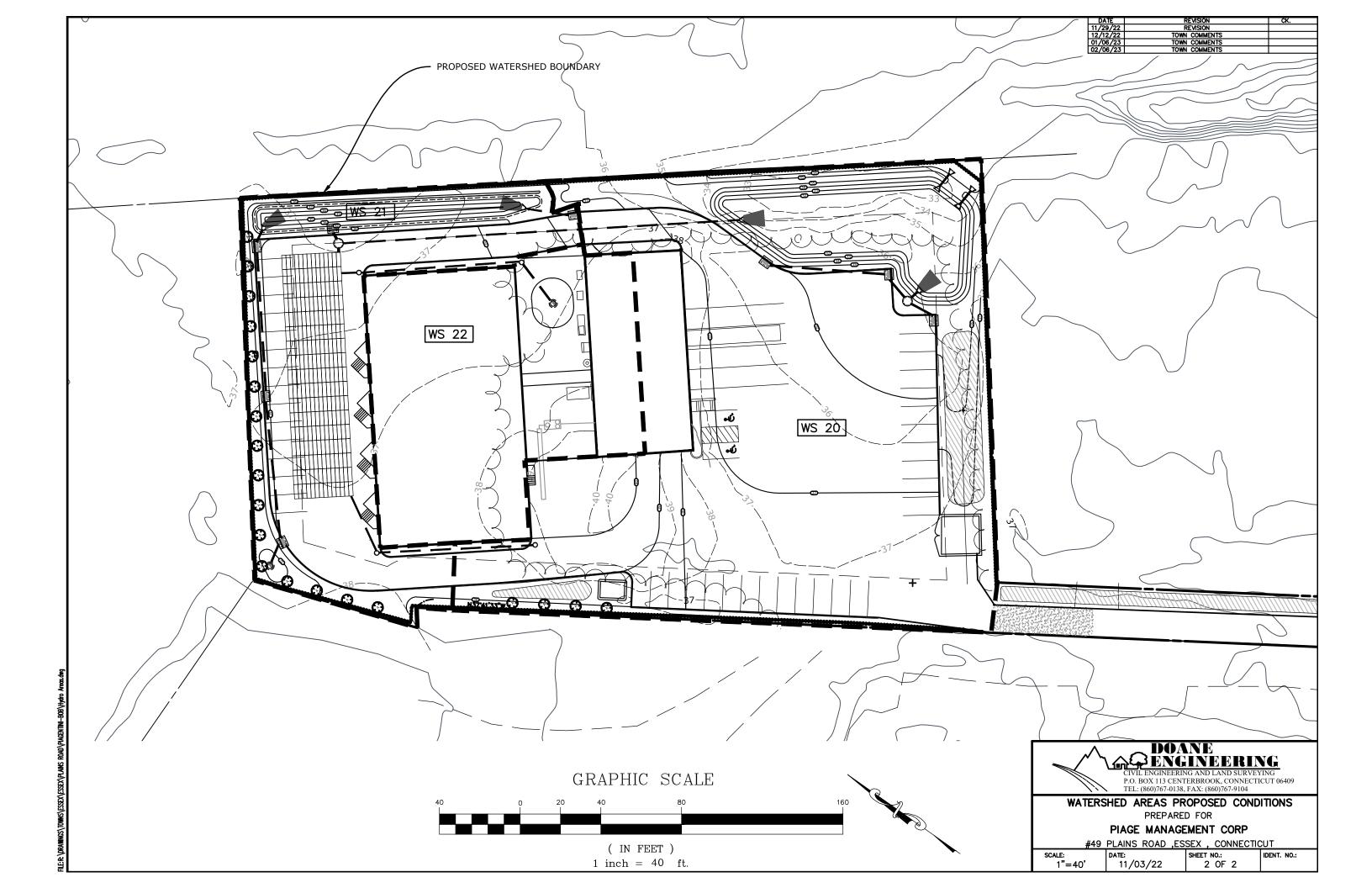
WQV, Water Quality Volume (AC-FT) RCV, Runoff Capture Volume (AC-FT) R, Volumetric Runoff Coefficient I, Percent Impervious Cover A, Site Area (AC)

WQV= $\frac{1" X R X A}{12}$ = $\frac{1}{12}$ $\frac{0.6712}{12}$ $\frac{1.84}{12}$ = 0.1029 AC-FT = 4482.9 CF

WQV=4482.9 CF

Groundwater Recharge


GVR=Groundwater Recharge Volume (ac-ft) D=Depth of Runoff to be Recharged (inches) (Table 7-4) A=Site Area (acres) I=Post Development Impervious (decimal) net inches increase in site impervious for redevelopment


Table 7-4 Groundwater Recharge Depth					
NCRS Hydrologic Soil Groups	Average Annual Recharge	Groundwater Recharge Depth (D)			
A	18 inches/year	0.4 inches			
В	12 inches/year	0.25 inches			
С	6 inches/year	0.1 inches			
D	3 inches/year	0 inces (waived)			

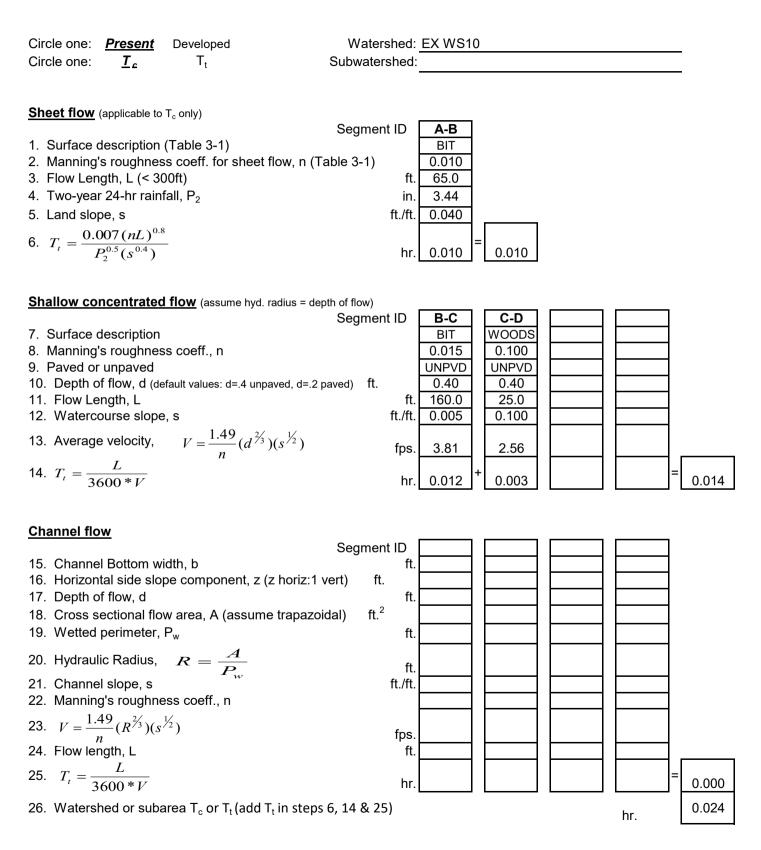
Existing Impervious	0.67
Proposed Impervious	1.27
Change In Impervious	0.6

GRV=	0.023	ac-ft	
GKV=	1001.9	cf	

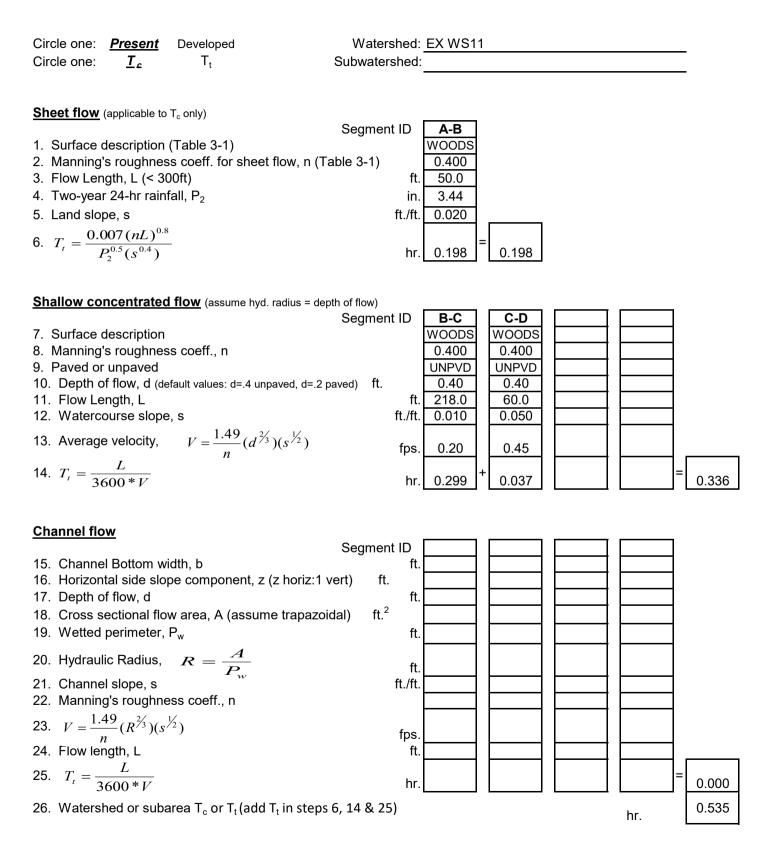
Appendix B Hydrologic Model Input Data and Results

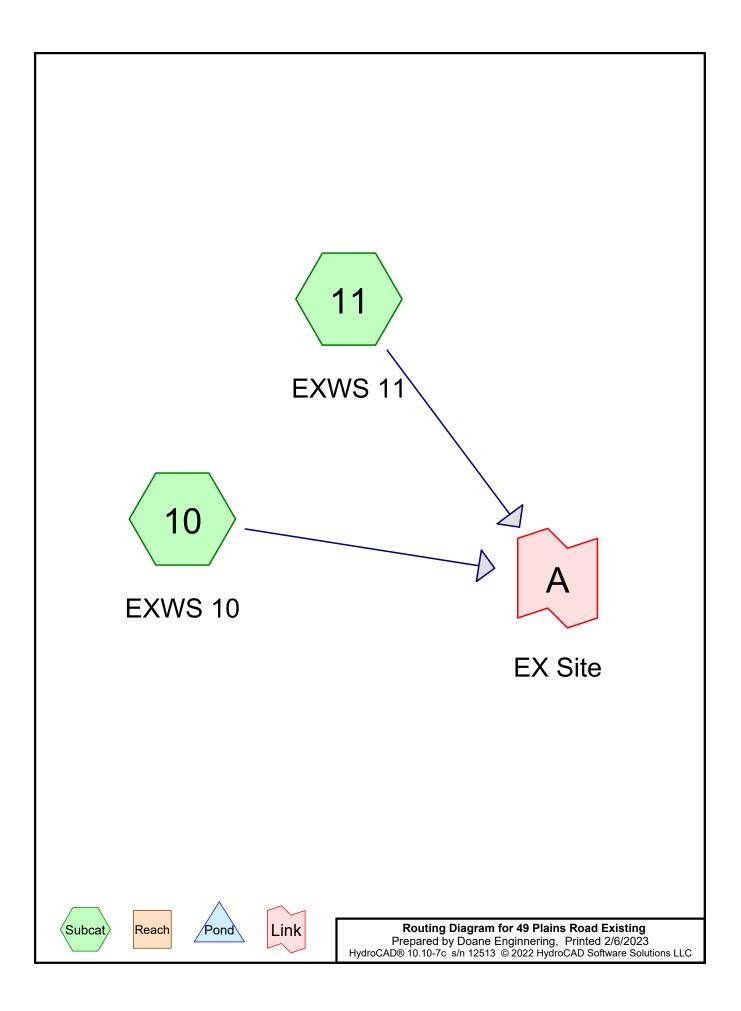
Watershed Area's

Existing Watershed WS 10				
	SF	AC		
Woods	9000	0.21		
Grass	1200	0.03		
Gravel	19300	0.44		
Impervious	10000	0.23		
Total	39500	0.91		


Existing Watershed WS 11					
	SF	AC			
Woods	30500	0.7			
Grass	5600	0.13			
Impervious	4500	0.1			
Total	40600	0.93			

Proposed Watershed WS 20					
		AC			
Grass	14755	0.34			
Impervious (Bituminous)	29400	0.67			
Impervious (Building)	2375	0.05			
Total	46530	1.07			


Proposed Water Shed WS 21					
	SF	AC			
Grass	6260	0.14			
Impervious (Bituminous)	11200	0.26			
Total	17460	0.4			


Proposed Water Shed WS 22					
	SF	AC			
Impervious (Building)	12500	0.29			
Impervious (Bituminous)	210	0			
Grass	3400	0.08			
Total	16110	0.37			

Time of Concentration (T_c) or Travel Time (T_t) Worksheet

Time of Concentration (T_c) or Travel Time (T_t) Worksheet

Rainfall Events Listing

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-yr	CT-49 Plains Road Essex 24-hr S1	1-yr	Default	24.00	1	2.85	2
2	2-yr	CT-49 Plains Road Essex 24-hr S1	2-yr	Default	24.00	1	3.44	2
3	5-yr	CT-49 Plains Road Essex 24-hr S1	5-yr	Default	24.00	1	4.40	2
4	10-yr	CT-49 Plains Road Essex 24-hr S1	10-yr	Default	24.00	1	5.20	2
5	25-yr	CT-49 Plains Road Essex 24-hr S1	25-yr	Default	24.00	1	6.31	2
6	50-yr	CT-49 Plains Road Essex 24-hr S1	50-yr	Default	24.00	1	7.13	2
7	100-yr	CT-49 Plains Road Essex 24-hr S1	100-yr	Default	24.00	1	8.01	2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.156	61	>75% Grass cover, Good, HSG B (10, 11)
0.443	96	Gravel surface, HSG B (10)
0.333	98	Impervious (10, 11)
0.907	55	Woods, Good, HSG B (10, 11)
1.839	73	TOTAL AREA

49 Plains Road Existing Prepared by Doane Enginnering HydroCAD® 10.10-7c s/n 12513 © 2022 HydroCAD Software Solutions LLC

Ground Covers (all nodes)

 HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	0.156	0.000	0.000	0.000	0.156	>75% Grass cover, Good	10, 11
0.000	0.443	0.000	0.000	0.000	0.443	Gravel surface	10
0.000	0.000	0.000	0.000	0.333	0.333	Impervious	10, 11
0.000	0.907	0.000	0.000	0.000	0.907	Woods, Good	10, 11
0.000	1.506	0.000	0.000	0.333	1.839	TOTAL AREA	

49 Plains Road Existing	CT-49 Plains Road Ess	sex 24-hr S1 1-yr Rainfall=2.85"
Prepared by Doane Enginnering		Printed 2/6/2023
HydroCAD® 10.10-7c s/n 12513 © 2022 HydroC	CAD Software Solutions LLC	Page <u>5</u>

Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10: EXWS10	Runoff Area=39,500 sf 25.32% Impervious Runoff Depth>1.53" Tc=6.0 min CN=86 Runoff=1.76 cfs 0.116 af
Subcatchment 11: EXWS 11	Runoff Area=40,600 sf 11.08% Impervious Runoff Depth>0.30" Tc=32.1 min CN=61 Runoff=0.08 cfs 0.024 af
Link A: EX Site	Inflow=1.76 cfs 0.140 af Primary=1.76 cfs 0.140 af

Total Runoff Area = 1.839 acRunoff Volume = 0.140 afAverage Runoff Depth = 0.91"81.90% Pervious = 1.506 ac18.10% Impervious = 0.333 ac

Summary for Subcatchment 10: EXWS 10

Runoff = 1.76 cfs @ 12.04 hrs, Volume= 0.116 af, Depth> 1.53" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 1-yr Rainfall=2.85"

	Д	rea (sf)	CN D	escription								
		9,000		Woods, Good, HSG B								
		1,200			s cover, Go		SG B					
*		19,300			ace, HSG E	3						
		<u>10,000</u> 39,500		npervious Veighted A	Vorago							,
		29,500			verage vious Area							
		10,000			pervious Ar							
	т.	1	Olama	Valasita.	0	Deee						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Desc	ription					
	6.0	(1001)	(10/10)	(14000)	(010)	Direc	t Entry, N		R-55 TC	6.0 MIN		
				_			-	_				
				S	Subcatch	ment	10: EXV	VS 10				
		4			Hydro	graph						
	1											Runoff
	_					76 cfs		aine P	ad Ecc	ex 24-hr S	1 1 vr	
							01-43 F1			Rainfall=		
	-									Area=39,5		
	-							F		/olume=0.1		
									Run	off Depth> Tc=6.		
	.										N=86	
	Flow (cfs) ₋⊥	, , , , , , , , , , , , , , , , , , ,		+	- 			++-	-+		- + +	
	Flow					K						
	-						1 1 1 1 1 1 1 1 1					
	-											
	-											

2 3 4 5

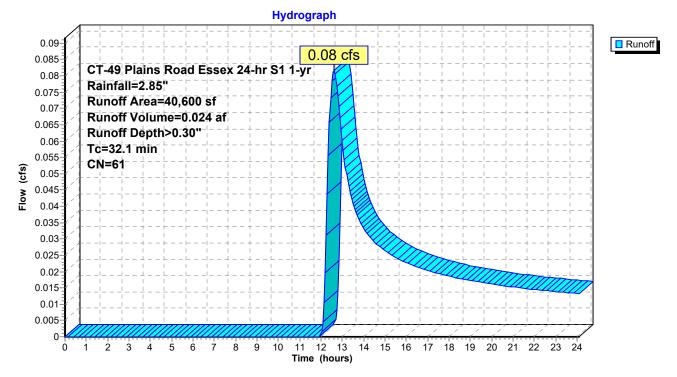
7 8

6

10

ģ

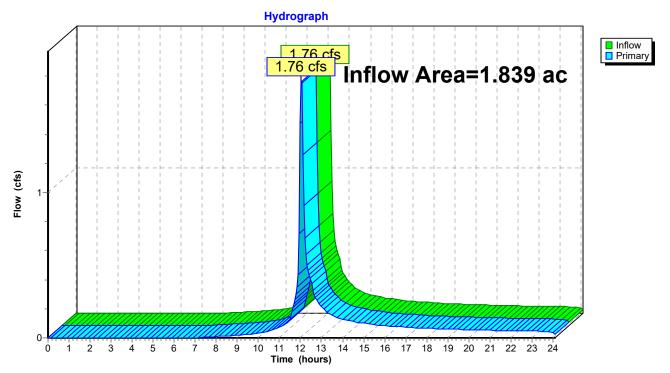
11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours)


Summary for Subcatchment 11: EXWS 11

Runoff = 0.08 cfs @ 12.60 hrs, Volume= 0.024 af, Depth> 0.30" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 1-yr Rainfall=2.85"

	A	rea (sf)	CN	Description				
		30,500	55	Woods, Go	Noods, Good, HSG B			
		5,600	61	>75% Grass cover, Good, HSG B				
*		4,500	98	Impervious				
		40,600	61	Weighted A	verage			
		36,100		88.92% Pervious Area				
		4,500		11.08% Impervious Area				
	Тс	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	32.1					Direct Entry, See Worksheet		


Subcatchment 11: EXWS 11

Summary for Link A: EX Site

Inflow Area =	1.839 ac, 18.10% Impervious, I	Inflow Depth > 0.91" for 1-yr event
Inflow =	1.76 cfs @ 12.04 hrs, Volume=	0.140 af
Primary =	1.76 cfs @ 12.04 hrs, Volume=	0.140 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs

Link A: EX Site

49 Plains Road Existing	CT-49 Plains Road Essex 24-hr S1 2-	yr Rainfall=3.44"
Prepared by Doane Enginnering		Printed 2/6/2023
HydroCAD® 10.10-7c s/n 12513 © 2022 HydroC	CAD Software Solutions LLC	Page 9

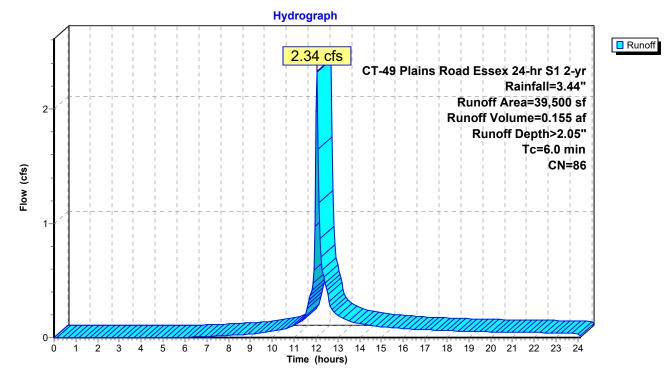
Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10: EXWS10	Runoff Area=39,500 sf 25.32% Impervious Runoff Depth>2.05" Tc=6.0 min CN=86 Runoff=2.34 cfs 0.155 af
Subcatchment 11: EXWS 11	Runoff Area=40,600 sf 11.08% Impervious Runoff Depth>0.54" Tc=32.1 min CN=61 Runoff=0.20 cfs 0.042 af
Link A: EX Site	Inflow=2.35 cfs 0.196 af

Primary=2.35 cfs 0.196 af

Total Runoff Area = 1.839 acRunoff Volume = 0.196 afAverage Runoff Depth = 1.28"81.90% Pervious = 1.506 ac18.10% Impervious = 0.333 ac

Summary for Subcatchment 10: EXWS 10

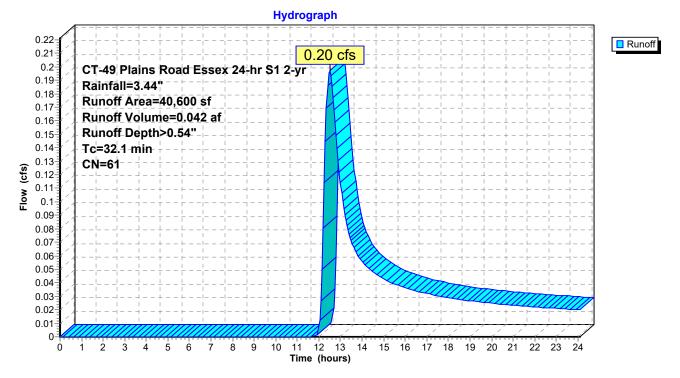

Runoff = 2.34 cfs @ 12.04 hrs, Volume= 0.155 af, Depth> 2.05" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 2-yr Rainfall=3.44"

	Area (sf)	CN	Description				
	9,000	55	Woods, Go	od, HSG B			
	1,200	61	>75% Gras	>75% Grass cover, Good, HSG B			
	19,300	96	Gravel surfa	ace, HSG E	3		
*	10,000	98	Impervious				
	39,500	86	Weighted A	verage			
	29,500		74.68% Pei	74.68% Pervious Area			
	10,000		25.32% Imp	pervious Are	ea		
	Tc Length			Capacity	Description		
(m	in) (feet	:) (ft/	ft) (ft/sec)	(cfs)			

Direct Entry, MIN TR-55 TC 6.0 MIN

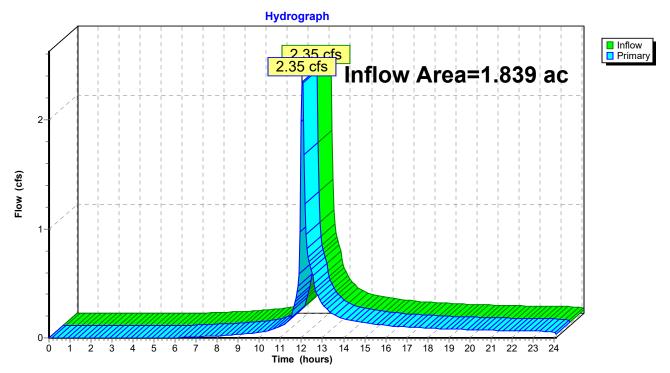
Subcatchment 10: EXWS 10


Summary for Subcatchment 11: EXWS 11

Runoff = 0.20 cfs @ 12.49 hrs, Volume= 0.042 af, Depth> 0.54" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 2-yr Rainfall=3.44"

	Area (sf)	CN	Description				
	30,500	55	Woods, Go	Woods, Good, HSG B			
	5,600	61	>75% Gras	>75% Grass cover, Good, HSG B			
*	4,500	98	Impervious				
	40,600	61	Weighted A	verage			
	36,100		88.92% Pervious Area				
	4,500		11.08% Impervious Area				
	c Length		,	Capacity	Description		
(mi	<u>ר) (feet)</u>	(ft/f	t) (ft/sec)	(cfs)			
32	.1				Direct Entry, See Worksheet		


Subcatchment 11: EXWS 11

Summary for Link A: EX Site

Inflow Area	a =	1.839 ac, 18.10% Impervious, Inflow Depth > 1.28" for 2-yr event
Inflow	=	2.35 cfs @ 12.04 hrs, Volume= 0.196 af
Primary	=	2.35 cfs $\overline{@}$ 12.04 hrs, Volume= 0.196 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs

Link A: EX Site

49 Plains Road Existing	CT-49 Plains Road Essex	24-hr S1 5-yr Rainfall=4.40"
Prepared by Doane Enginnering		Printed 2/6/2023
HydroCAD® 10.10-7c s/n 12513 © 2022 HydroC	CAD Software Solutions LLC	Page 13

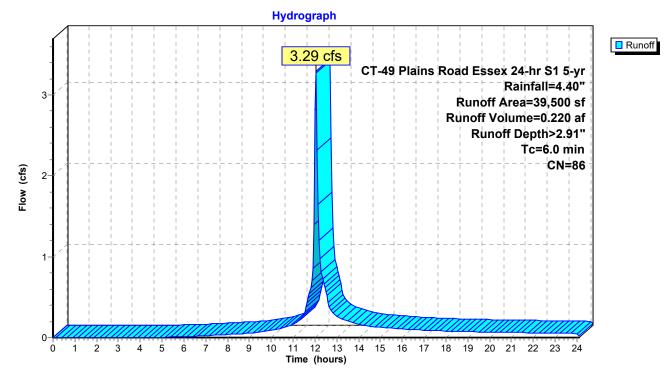
Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10: EXWS10	Runoff Area=39,500 sf 25.32% Impervious Runoff Depth>2.91" Tc=6.0 min CN=86 Runoff=3.29 cfs 0.220 af
Subcatchment 11: EXWS 11	Runoff Area=40,600 sf 11.08% Impervious Runoff Depth>1.01" Tc=32.1 min CN=61 Runoff=0.46 cfs 0.079 af
Link A: EX Site	Inflow=3.37 cfs 0.299 af

Primary=3.37 cfs 0.299 af

Total Runoff Area = 1.839 acRunoff Volume = 0.299 af
81.90% Pervious = 1.506 acAverage Runoff Depth = 1.95"
18.10% Impervious = 0.333 ac

Summary for Subcatchment 10: EXWS 10

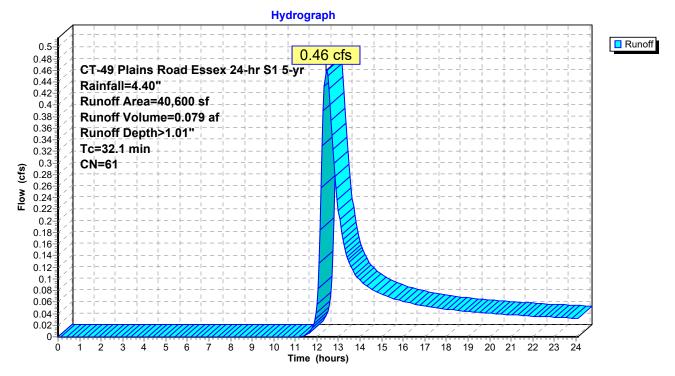

Runoff = 3.29 cfs @ 12.04 hrs, Volume= 0.220 af, Depth> 2.91" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 5-yr Rainfall=4.40"

	Area (sf)	CN	Description			
	9,000	55	Woods, Goo	od, HSG B		
	1,200	61	>75% Grass	s cover, Go	od, HSG B	
	19,300	96	Gravel surfa	ace, HSG E		
*	10,000	98	Impervious			
39,500 86 Weighted Average 29,500 74.68% Pervious Area 10,000 25.32% Impervious Area			vious Area	a		
(m	Tc Length in) (feet)	Slop (ft/f		Capacity (cfs)	Description	

Direct Entry, MIN TR-55 TC 6.0 MIN

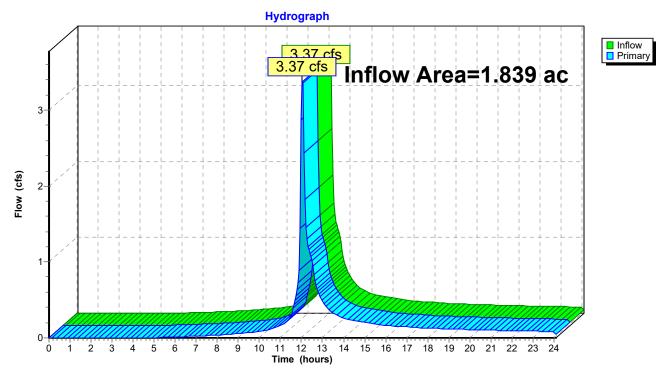
Subcatchment 10: EXWS 10


Summary for Subcatchment 11: EXWS 11

Runoff = 0.46 cfs @ 12.44 hrs, Volume= 0.079 af, Depth> 1.01" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 5-yr Rainfall=4.40"

	Area (sf)	CN	Description				
	30,500	55	Woods, Go	od, HSG B			
	5,600	61	>75% Gras	>75% Grass cover, Good, HSG B			
*	4,500	98	Impervious				
	40,600	61	Weighted A	verage			
	36,100		88.92% Per	vious Area			
	4,500		11.08% Imp	pervious Ar	ea		
	Tc Length	Slop	,	Capacity	Description		
(r	min) (feet)	(ft/f	t) (ft/sec)	(cfs)			
3	32.1				Direct Entry, See Worksheet		


Subcatchment 11: EXWS 11

Summary for Link A: EX Site

Inflow Area	=	1.839 ac, <i>1</i>	18.10% Impervio	ous, Inflow De	pth > 1.95"	for 5-yr event
Inflow :	=	3.37 cfs @	12.04 hrs, Vol	ume=	0.299 af	
Primary :	=	3.37 cfs @	12.04 hrs, Vol	ume=	0.299 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs

Link A: EX Site

49 Plains Road Existing	CT-49 Plains Road Esse	ex 24-hr S1 10-yr Rainfall=5.20"
Prepared by Doane Enginnering		Printed 2/6/2023
HydroCAD® 10.10-7c s/n 12513 © 2022 Hydro	oCAD Software Solutions LLC	Page 17

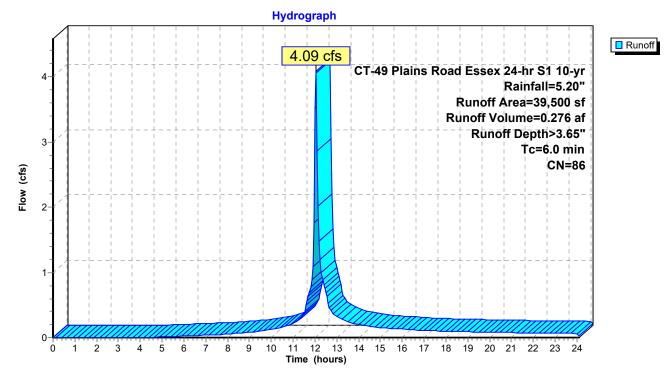
Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10: EXWS10	Runoff Area=39,500 sf 25.32% Impervious Runoff Depth>3.65" Tc=6.0 min CN=86 Runoff=4.09 cfs 0.276 af
Subcatchment11: EXWS 11	Runoff Area=40,600 sf 11.08% Impervious Runoff Depth>1.47" Tc=32.1 min CN=61 Runoff=0.72 cfs 0.114 af
Link A: EX Site	Inflow=4.25 cfs 0.391 af

Primary=4.25 cfs 0.391 af

Total Runoff Area = 1.839 acRunoff Volume = 0.391 af
81.90% Pervious = 1.506 acAverage Runoff Depth = 2.55"
18.10% Impervious = 0.333 ac

Summary for Subcatchment 10: EXWS 10

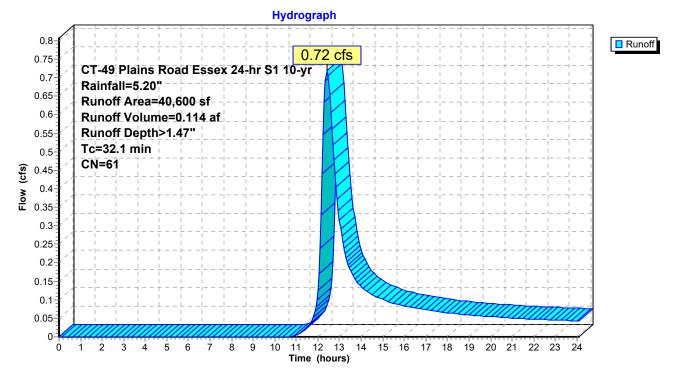

Runoff = 4.09 cfs @ 12.04 hrs, Volume= 0.276 af, Depth> 3.65" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 10-yr Rainfall=5.20"

	Area (sf)	CN	Description				
	9,000	55	Woods, Good, HSG B				
	1,200	61	>75% Grass cover, Good, HSG B				
	19,300	96	Gravel surface, HSG B				
*	10,000	98	Impervious				
	39,500	86	Weighted Average				
	29,500		74.68% Pervious Area				
	10,000		25.32% Impervious Area				
(n	Tc Length nin) (feet)	Slop (ft/					

Direct Entry, MIN TR-55 TC 6.0 MIN

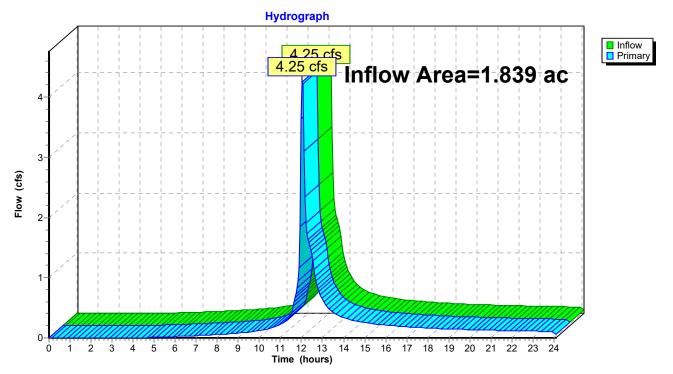
Subcatchment 10: EXWS 10


Summary for Subcatchment 11: EXWS 11

Runoff = 0.72 cfs @ 12.42 hrs, Volume= 0.114 af, Depth> 1.47" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 10-yr Rainfall=5.20"

	Area (sf)	CN	Description				
	30,500	55	Woods, Go	od, HSG B			
	5,600	61	>75% Gras	75% Grass cover, Good, HSG B			
*	4,500	98	Impervious				
	40,600	61	Weighted A	verage			
	36,100 88.92% Pervious Area						
	4,500	4,500 11.08% Impervious Area					
_							
T	5	Slope		Capacity	Description		
(min) (feet)	(ft/ft) (ft/sec)	(cfs)			
32.	1				Direct Entry, See Worksheet		


Subcatchment 11: EXWS 11

Summary for Link A: EX Site

Inflow Area	a =	1.839 ac, 18.10% Impervious, Inflow Depth > 2.55" for 10-yr event	
Inflow	=	4.25 cfs @ 12.04 hrs, Volume= 0.391 af	
Primary	=	4.25 cfs $\overline{@}$ 12.04 hrs, Volume= 0.391 af, Atten= 0%, Lag= 0.0	min

Primary outflow = Inflow, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs

Link A: EX Site

49 Plains Road Existing	CT-49 Plains Road Essex	24-hr S1 25-yr Rainfall=6.31"
Prepared by Doane Enginnering		Printed 2/6/2023
HydroCAD® 10.10-7c s/n 12513 © 2022 Hydro	oCAD Software Solutions LLC	Page 21

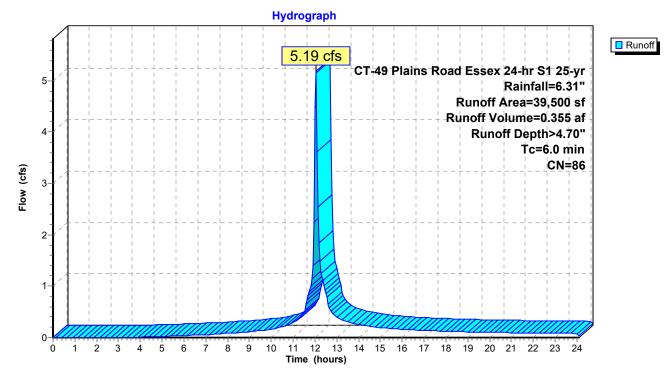
Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10: EXWS10	Runoff Area=39,500 sf 25.32% Impervious Runoff Depth>4.70" Tc=6.0 min CN=86 Runoff=5.19 cfs 0.355 af
Subcatchment11: EXWS 11	Runoff Area=40,600 sf 11.08% Impervious Runoff Depth>2.19" Tc=32.1 min CN=61 Runoff=1.12 cfs 0.170 af
Link A: EX Site	Inflow=5.49 cfs 0.526 af

Primary=5.49 cfs 0.526 af

Total Runoff Area = 1.839 acRunoff Volume = 0.526 af
81.90% Pervious = 1.506 acAverage Runoff Depth = 3.43"
18.10% Impervious = 0.333 ac

Summary for Subcatchment 10: EXWS 10

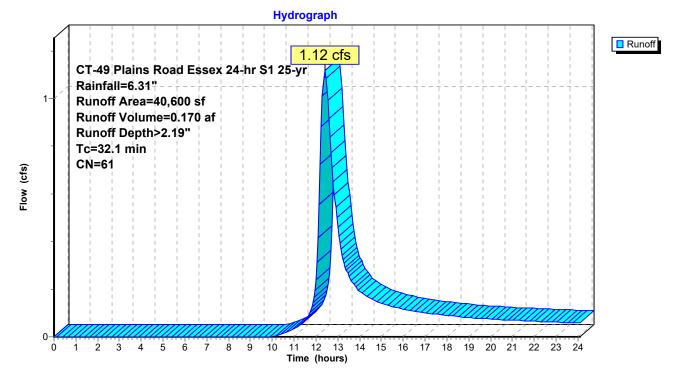

Runoff = 5.19 cfs @ 12.04 hrs, Volume= 0.355 af, Depth> 4.70" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 25-yr Rainfall=6.31"

	Area (sf)	CN	Description			
	9,000	55	Woods, Go	od, HSG B		
	1,200	61	>75% Gras	s cover, Go	ood, HSG B	
	19,300	96	Gravel surfa	ace, HSG E	3	
*	10,000	98	Impervious			
	39,500	86	Weighted A	verage		
	29,500		74.68% Per	vious Area		
	10,000		25.32% Imp	pervious Ar	ea	
	Tc Length	Slop	e Velocity	Capacity	Description	
(n	nin) (feet)	(ft/1	t) (ft/sec)	(cfs)		

Direct Entry, MIN TR-55 TC 6.0 MIN

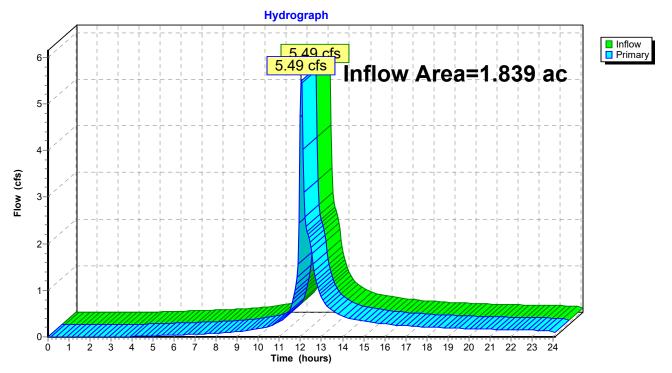
Subcatchment 10: EXWS 10


Summary for Subcatchment 11: EXWS 11

Runoff = 1.12 cfs @ 12.41 hrs, Volume= 0.170 af, Depth> 2.19" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 25-yr Rainfall=6.31"

	Area (sf)	CN	Description		
	30,500	55	Woods, Go	od, HSG B	
	5,600	61	>75% Gras	s cover, Go	bod, HSG B
*	4,500	98	Impervious		
	40,600	61	Weighted A	verage	
	36,100		88.92% Pe	rvious Area	l de la constante de
	4,500		11.08% Imp	pervious Ar	ea
T	5	Slope		Capacity	Description
(min) (feet)	(ft/ft) (ft/sec)	(cfs)	
32.	[Direct Entry, See Worksheet


Subcatchment 11: EXWS 11

Summary for Link A: EX Site

Inflow Area	a =	1.839 ac, 18.10% Impervious, Inflow Depth > 3.43" for 25-yr event	
Inflow	=	5.49 cfs @ 12.04 hrs, Volume= 0.526 af	
Primary	=	5.49 cfs $\overline{@}$ 12.04 hrs, Volume= 0.526 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs

Link A: EX Site

49 Plains Road Existing	CT-49 Plains Road Esse	x 24-hr S1 50-yr Rainfall=7.13"
Prepared by Doane Enginnering		Printed 2/6/2023
HydroCAD® 10.10-7c s/n 12513 © 2022 Hydro	oCAD Software Solutions LLC	Page 25

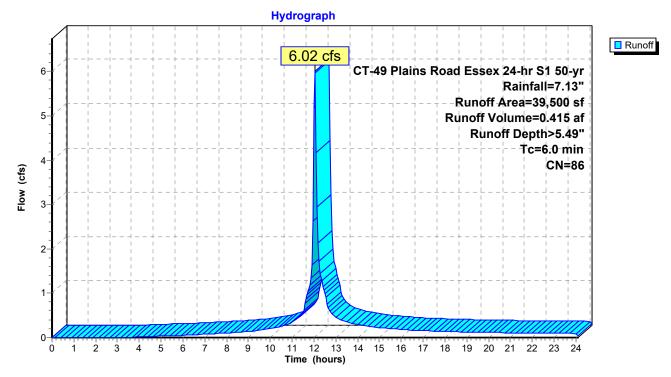
Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10: EXWS10	Runoff Area=39,500 sf 25.32% Impervious Runoff Depth>5.49" Tc=6.0 min CN=86 Runoff=6.02 cfs 0.415 af
Subcatchment11: EXWS 11	Runoff Area=40,600 sf 11.08% Impervious Runoff Depth>2.77" Tc=32.1 min CN=61 Runoff=1.45 cfs 0.215 af
Link A: EX Site	Inflow=6.42 cfs 0.630 af

Primary=6.42 cfs 0.630 af

Total Runoff Area = 1.839 acRunoff Volume = 0.630 afAverage Runoff Depth = 4.11"81.90% Pervious = 1.506 ac18.10% Impervious = 0.333 ac

Summary for Subcatchment 10: EXWS 10

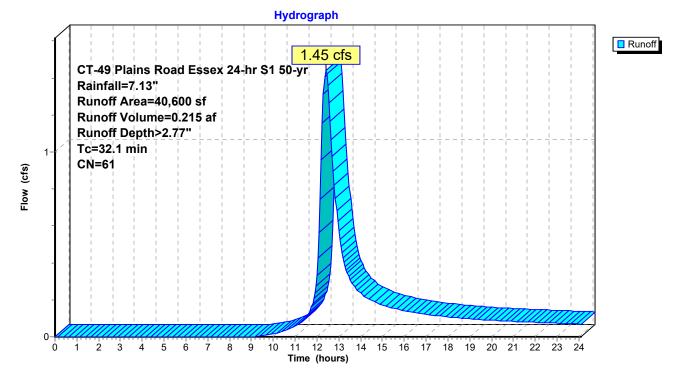

Runoff = 6.02 cfs @ 12.04 hrs, Volume= 0.415 af, Depth> 5.49" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 50-yr Rainfall=7.13"

	Area (sf)	CN	Description
	9,000	55	Woods, Good, HSG B
	1,200	61	>75% Grass cover, Good, HSG B
	19,300	96	Gravel surface, HSG B
*	10,000	98	Impervious
	39,500	86	Weighted Average
	29,500		74.68% Pervious Area
	10,000		25.32% Impervious Area
(n	Tc Length nin) (feet)	Slop (ft/	

Direct Entry, MIN TR-55 TC 6.0 MIN

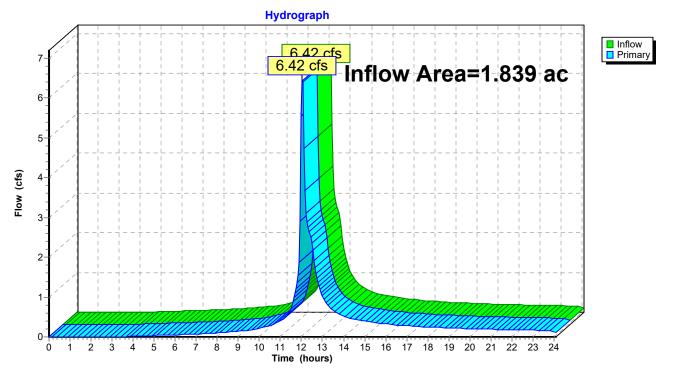
Subcatchment 10: EXWS 10


Summary for Subcatchment 11: EXWS 11

Runoff = 1.45 cfs @ 12.41 hrs, Volume= 0.215 af, Depth> 2.77" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 50-yr Rainfall=7.13"

A	Area (sf)	CN	Description		
	30,500	55	Woods, Go	od, HSG B	
	5,600	61	>75% Gras	s cover, Go	ood, HSG B
*	4,500	98	Impervious		
	40,600	61	Weighted A	verage	
	36,100		88.92% Per	rvious Area	
	4,500		11.08% Imp	pervious Ar	ea
Tc		Slope	,	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
32.1					Direct Entry, See Worksheet


Subcatchment 11: EXWS 11

Summary for Link A: EX Site

Inflow Area	a =	1.839 ac, 18.10% Impervious, Inflow Depth > 4.11" for 50-yr event
Inflow	=	6.42 cfs @ 12.04 hrs, Volume= 0.630 af
Primary	=	6.42 cfs @ 12.04 hrs, Volume= 0.630 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs

Link A: EX Site

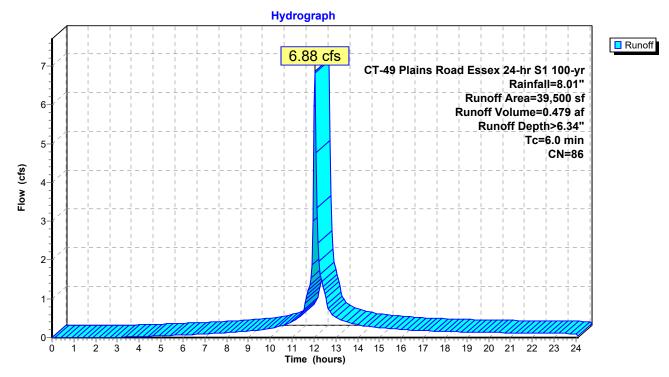
49 Plains Road Existing	CT-49 Plains Road Essex 24-hr S	S1 100-yr Rainfall=8.01"
Prepared by Doane Enginnering		Printed 2/6/2023
HydroCAD® 10.10-7c s/n 12513 © 2022 Hyd	IroCAD Software Solutions LLC	Page 29

Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment10: EXWS10	Runoff Area=39,500 sf 25.32% Impervious Runoff Depth>6.34" Tc=6.0 min CN=86 Runoff=6.88 cfs 0.479 af
Subcatchment 11: EXWS 11	Runoff Area=40,600 sf 11.08% Impervious Runoff Depth>3.42" Tc=32.1 min CN=61 Runoff=1.80 cfs 0.266 af
Link A: EX Site	Inflow=7.41 cfs 0.745 af

Primary=7.41 cfs 0.745 af

Total Runoff Area = 1.839 acRunoff Volume = 0.745 afAverage Runoff Depth = 4.86"81.90% Pervious = 1.506 ac18.10% Impervious = 0.333 ac

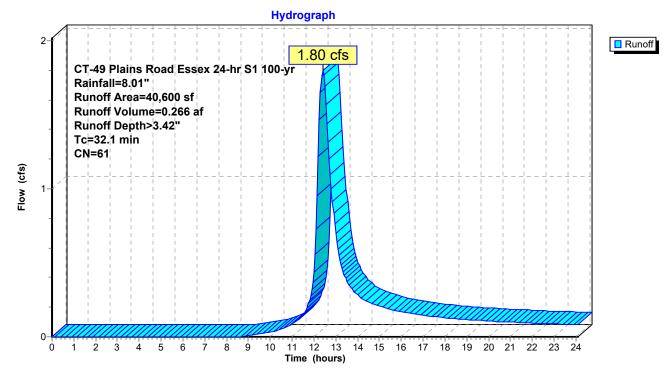

Summary for Subcatchment 10: EXWS 10

Runoff = 6.88 cfs @ 12.04 hrs, Volume= 0.479 af, Depth> 6.34" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 100-yr Rainfall=8.01"

	Α	rea (sf)	CN	Description							
		9,000	55	Woods, Go	od, HSG B						
		1,200	61	>75% Gras	6 Grass cover, Good, HSG B						
		19,300	96	Gravel surfa	vel surface, HSG B						
*		10,000	98	Impervious							
		39,500	86	Weighted A	verage						
		29,500		74.68% Pervious Area							
		10,000		25.32% Imp	5.32% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description					
(n	nin)	(feet)	(ft/ft	(ft/sec)	(cfs)						
	6.0					Direct Entry, MIN TR-55 TC 6.0 MIN					

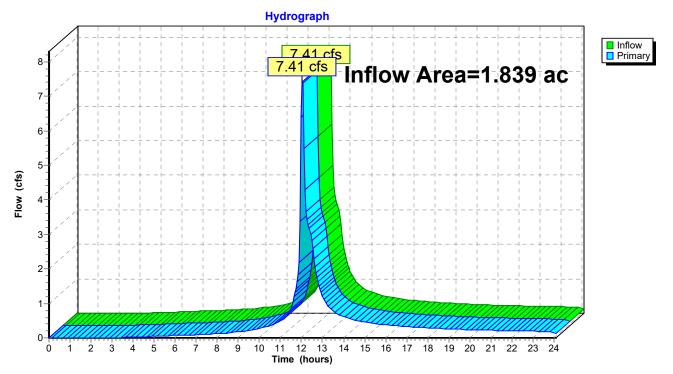
Subcatchment 10: EXWS 10

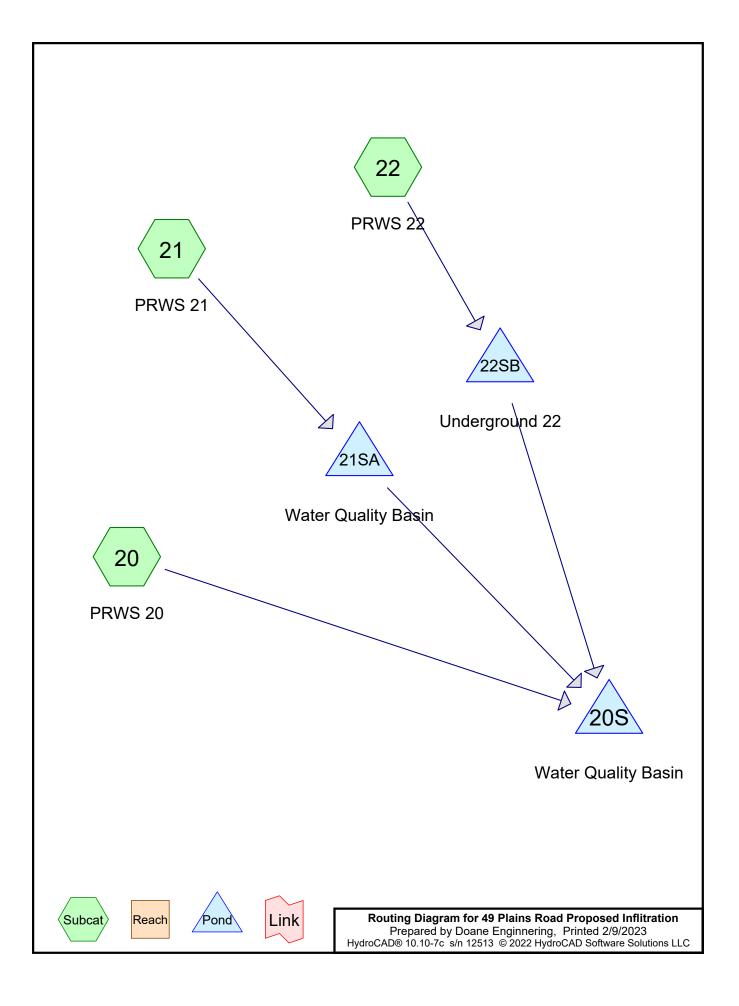

Summary for Subcatchment 11: EXWS 11

Runoff = 1.80 cfs @ 12.40 hrs, Volume= 0.266 af, Depth> 3.42" Routed to Link A : EX Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 100-yr Rainfall=8.01"

	Area (st	f) CN	Description						
	30,50	0 55	Woods, Go	od, HSG B					
	5,60	0 61	>75% Gras	% Grass cover, Good, HSG B					
*	4,50	0 98	Impervious						
	40,60	0 61	Weighted A	verage					
	36,10	0	88.92% Pe	rvious Area	l				
	4,50	0	11.08% Im	11.08% Impervious Area					
	Tc Leng			Capacity	Description				
<u>(m</u>	in) (fee	et) (ft	/ft) (ft/sec)	(cfs)					
32	2.1				Direct Entry, See Worksheet				


Subcatchment 11: EXWS 11


Summary for Link A: EX Site

Inflow Area	a =	1.839 ac, 18.10% Impervious, Inflow Depth > 4.86" for 100-yr event
Inflow	=	7.41 cfs @ 12.04 hrs, Volume= 0.745 af
Primary	=	7.41 cfs $\hat{@}$ 12.04 hrs, Volume= 0.745 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs

Link A: EX Site

49 Plains Road Proposed Inflitration Prepared by Doane Enginnering HydroCAD® 10.10-7c s/n 12513 © 2022 HydroCAD Software Solutions LLC

Rainfall Events Listing

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-yr	CT-49 Plains Road Essex 24-hr S1	1-yr	Default	24.00	1	2.85	2
2	2-yr	CT-49 Plains Road Essex 24-hr S1	2-yr	Default	24.00	1	3.44	2
3	5-yr	CT-49 Plains Road Essex 24-hr S1	5-yr	Default	24.00	1	4.40	2
4	10-yr	CT-49 Plains Road Essex 24-hr S1	10-yr	Default	24.00	1	5.20	2
5	25-yr	CT-49 Plains Road Essex 24-hr S1	25-yr	Default	24.00	1	6.31	2
6	50-yr	CT-49 Plains Road Essex 24-hr S1	50-yr	Default	24.00	1	7.13	2
7	100-yr	CT-49 Plains Road Essex 24-hr S1	100-yr	Default	24.00	1	8.01	2

49 Plains Road Proposed Inflitration Prepared by Doane Enginnering HydroCAD® 10.10-7c s/n 12513 © 2022 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.560	61	>75% Grass cover, Good, HSG B (20, 21, 22)
0.937	98	Paved parking, HSG B (20, 21, 22)
0.287	98	Roofs, HSG B (22)
0.055	98	Unconnected roofs, HSG B (20)
1.839	87	TOTAL AREA

49 Plains Road Proposed Inflitration Prepared by Doane Enginnering HydroCAD® 10.10-7c s/n 12513 © 2022 HydroCAD Software Solutions LLC

Ground Covers (all nodes)

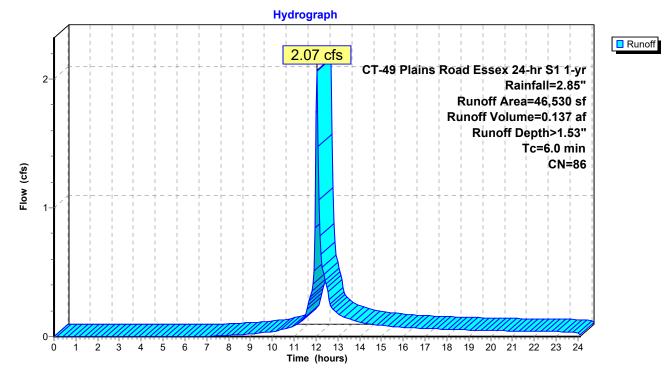
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	0.560	0.000	0.000	0.000	0.560	>75% Grass cover, Good	20, 21, 22
0.000	0.937	0.000	0.000	0.000	0.937	Paved parking	20, 21, 22
0.000	0.287	0.000	0.000	0.000	0.287	Roofs	22
0.000	0.055	0.000	0.000	0.000	0.055	Unconnected roofs	20
0.000	1.839	0.000	0.000	0.000	1.839	TOTAL AREA	

Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 20: PRWS 20	Runoff Area=46,530 sf 68.29% Impervious Runoff Depth>1.53" Tc=6.0 min CN=86 Runoff=2.07 cfs 0.137 af
Subcatchment 21: PRWS 21	Runoff Area=17,460 sf 64.15% Impervious Runoff Depth>1.46" Tc=0.0 min CN=85 Runoff=0.89 cfs 0.049 af
Subcatchment 22: PRWS 22	Runoff Area=16,110 sf 78.90% Impervious Runoff Depth>1.85" Tc=6.0 min CN=90 Runoff=0.86 cfs 0.057 af
Pond 20S: Water Quality Basin	Peak Elev=33.64' Storage=6,467 cf Inflow=2.57 cfs 0.185 af Outflow=0.46 cfs 0.128 af
Pond 21SA: Water Quality Basin	Peak Elev=37.42' Storage=1,929 cf Inflow=0.89 cfs 0.049 af Outflow=0.85 cfs 0.049 af
Pond 22SB: Underground 22 Discarded=0.09 cfs	Peak Elev=37.61' Storage=0.017 af Inflow=0.86 cfs 0.057 af 0.057 af Primary=0.00 cfs 0.000 af Outflow=0.09 cfs 0.057 af

Total Runoff Area = 1.839 ac Runoff Volume = 0.242 af Average Runoff Depth = 1.58" 30.48% Pervious = 0.560 ac 69.52% Impervious = 1.278 ac

Summary for Subcatchment 20: PRWS 20

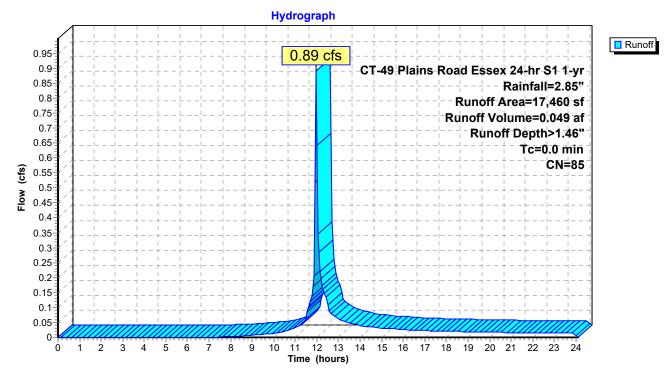

Runoff = 2.07 cfs @ 12.04 hrs, Volume= 0.137 af, Depth> 1.53" Routed to Pond 20S : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 1-yr Rainfall=2.85"

Area (sf)	CN	Description				
14,755	61	>75% Grass cover, Good, HSG B				
29,400	98	Paved parking, HSG B				
2,375	98	Unconnected roofs, HSG B				
46,530	86	Weighted Average				
14,755		31.71% Pervious Area				
31,775	31,775 68.29% Impervious Area					
2,375	2,375 7.47% Unconnected					
Tc Length	Slop	be Velocity Capacity Description				

	(feet)	 (ft/sec)	 Description	
6.0			Direct Entry	,

Subcatchment 20: PRWS 20

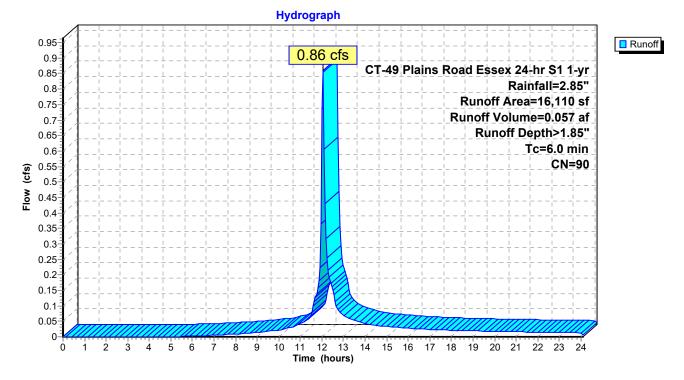

Summary for Subcatchment 21: PRWS 21

Runoff = 0.89 cfs @ 11.96 hrs, Volume= 0.049 af, Depth> 1.46" Routed to Pond 21SA : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 1-yr Rainfall=2.85"

Area (sf)	CN	Description
6,260	61	>75% Grass cover, Good, HSG B
11,200	98	Paved parking, HSG B
17,460	85	Weighted Average
6,260		35.85% Pervious Area
11,200		64.15% Impervious Area

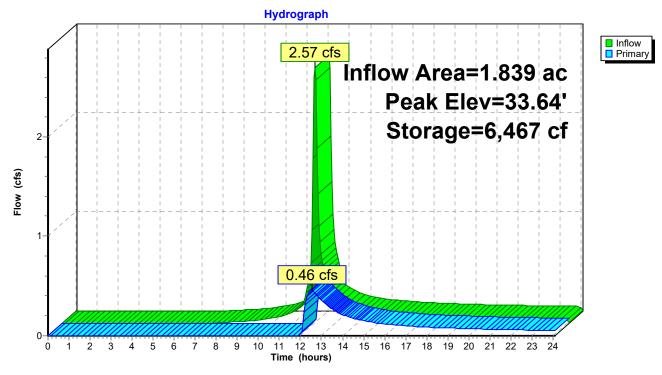
Subcatchment 21: PRWS 21


Summary for Subcatchment 22: PRWS 22

Runoff = 0.86 cfs @ 12.04 hrs, Volume= 0.057 af, Depth> 1.85" Routed to Pond 22SB : Underground 22

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 1-yr Rainfall=2.85"

A	rea (sf)	CN	Description				
	12,500	98	Roofs, HSG	в			
	210	98	Paved parking, HSG B				
	3,400	61	>75% Gras	s cover, Go	bod, HSG B		
	16,110	90	Weighted A	verage			
	3,400		21.10% Per	vious Area			
	12,710		78.90% Impervious Area				
-				o			
Tc	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry, MIn. TR-55 TC		

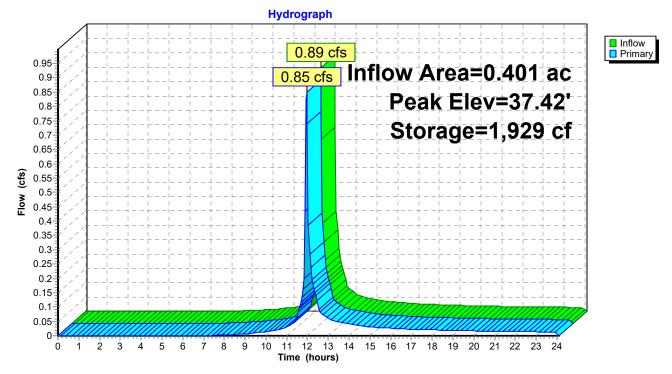

Summary for Pond 20S: Water Quality Basin

Inflow Area = 1.839 ac, 69.52% Impervious, Inflow Depth > 1.21" for 1-yr event Inflow = 2.57 cfs @ 12.02 hrs, Volume= 0.185 af Outflow = 0.46 cfs @ 12.53 hrs, Volume= 0.128 af, Atten= 82%, Lag= 30.6 min Primary = 0.46 cfs @ 12.53 hrs, Volume= 0.128 af Routed to nonexistent node 30 12.53 hrs, Volume= 0.128 af									
Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Starting Elev= 32.80' Surf.Area= 3,942 sf Storage= 2,955 cf Peak Elev= 33.64' @ 12.53 hrs Surf.Area= 4,465 sf Storage= 6,467 cf (3,512 cf above start)									
Plug-Flow detention time= 444.4 min calculated for 0.060 af (32% of inflow) Center-of-Mass det. time= 105.9 min(954.5 - 848.6)									
Volume Invert Avail.Storage Storage Description									
#1 32.00' 13,158 cf Custom Stage Data (Irregular)Listed below (Recalc)									
Elevation Surf.Area Perim. Inc.Store Cum.Store Wet.Area									
(feet) (sq-ft) (feet) (cubic-feet) (sq-ft)									
32.00 3,450 299.0 0 0 3,450									
33.00 4,070 311.0 3,756 3,756 4,108									
34.00 4,700 322.0 4,381 8,137 4,746									
35.00 5,350 335.0 5,021 13,158 5,501									
Device Routing Invert Outlet Devices									
#1 Primary 34.50' 10.0' long + 0.5 '/' SideZ x 3.0' breadth Broad-Crested Rectangular Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50	Neir								
2.50 3.00 3.50 4.00 4.50 Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68									
2.72 2.81 2.92 2.97 3.07 3.32									
#2 Primary 33.30' 12.0" Vert. Orifice/Grate C= 0.600									
Limited to weir flow at low heads									
Primary OutElow May-0.46 of $(2.52 \text{ bras} H)/(-22.64) (Free Discharge)$									

Primary OutFlow Max=0.46 cfs @ 12.53 hrs HW=33.64' (Free Discharge)

-1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

-2=Orifice/Grate (Orifice Controls 0.46 cfs @ 1.97 fps)



Pond 20S: Water Quality Basin

Summary for Pond 21SA: Water Quality Basin

Outflow = Primary =	0.89 cfs (0.85 cfs (@ 11.96 h @ 11.97 h @ 11.97 h	rs, Volume= rs, Volume= rs, Volume=	Depth > 1.46" for 0.049 af 0.049 af, Atten= 9 0.049 af	1-yr event 5%, Lag= 0.7 min	
Starting Elev	Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Starting Elev= 37.40' Surf.Area= 1,493 sf Storage= 1,899 cf Peak Elev= 37.42' @ 11.97 hrs Surf.Area= 1,504 sf Storage= 1,929 cf (29 cf above start)					
	tention time= 67 iss det. time= 0.		culated for 0.005 at .5 - 847.9)	f (11% of inflow)		
Volume	Invert Ava	il.Storage	Storage Description	on		
#1	35.00'	2,903 cf	Custom Stage Da	ata (Irregular) Listed	below (Recalc)	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)			<i>.</i>			
	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>	
35.00	<u>(sq-ft)</u> 166	<u>(feet)</u> 238.0	(cubic-feet) 0	<u>(cubic-feet)</u> 0	<u>(sq-ft)</u> 166	
35.00 36.00 37.00	166 681 1,259	238.0 264.0 291.0	0 394 955	0 394 1,350	166 1,235 2,459	
35.00 36.00 37.00 37.50	166 681 1,259 1,554	238.0 264.0 291.0 298.0	0 394 955 702	0 394 1,350 2,052	166 1,235 2,459 2,819	
35.00 36.00 37.00	166 681 1,259	238.0 264.0 291.0	0 394 955	0 394 1,350	166 1,235 2,459	
35.00 36.00 37.00 37.50 38.00	166 681 1,259 1,554 1,856	238.0 264.0 291.0 298.0 304.0	0 394 955 702	0 394 1,350 2,052	166 1,235 2,459 2,819	

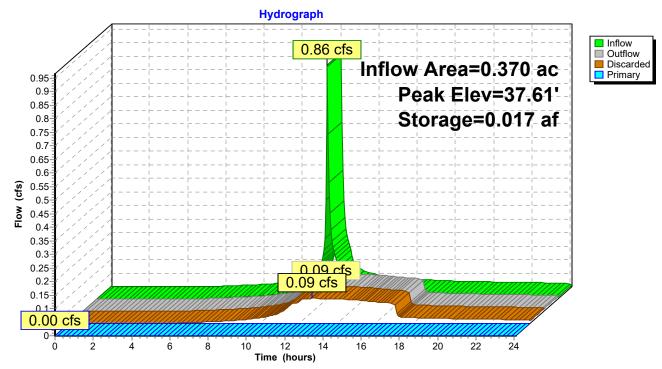
Primary OutFlow Max=0.62 cfs @ 11.97 hrs HW=37.42' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.62 cfs @ 0.44 fps)

Pond 21SA: Water Quality Basin

Summary for Pond 22SB: Underground 22

Inflow Area =	0.370 ac, 7	8.90% Impervious, Inflow	/ Depth > 1.85" for 1-yr event		
Inflow =	0.86 cfs @	12.04 hrs, Volume=	0.057 af		
Outflow =	0.09 cfs @	12.69 hrs, Volume=	0.057 af, Atten= 89%, Lag= 39.1 min		
Discarded =	0.09 cfs @	12.69 hrs, Volume=	0.057 af		
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af		
Routed to Pond	20S : Water	Quality Basin			
Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs					
Peak Elev= 37.61'	@ 12.69 hrs	Surf.Area= 0.072 ac St	orage= 0.017 af		

Plug-Flow detention time= 56.5 min calculated for 0.057 af (100% of inflow) Center-of-Mass det. time= 55.9 min (883.8 - 827.9)


Volume	Invert	Avail.Storage	Storage Description
#1A	37.00'	0.034 af	27.00'W x 116.39'L x 2.00'H Field A
			0.144 af Overall - 0.030 af Embedded = 0.114 af x 30.0% Voids
#2A	37.50'	0.030 af	ADS_StormTech SC-160LP +Cap x 192 Inside #1
			Effective Size= 18.0"W x 12.0"H => 0.96 sf x 7.12'L = 6.8 cf
			Overall Size= 25.0"W x 12.0"H x 7.56'L with 0.44' Overlap
			192 Chambers in 12 Rows
		0.064 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	37.00'	1.000 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 34.00'
#2	Primary	38.40'	4.0' long + 1.0 '/' SideZ x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Discarded OutFlow Max=0.09 cfs @ 12.69 hrs HW=37.61' (Free Discharge) **1=Exfiltration** (Controls 0.09 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=37.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 22SB: Underground 22

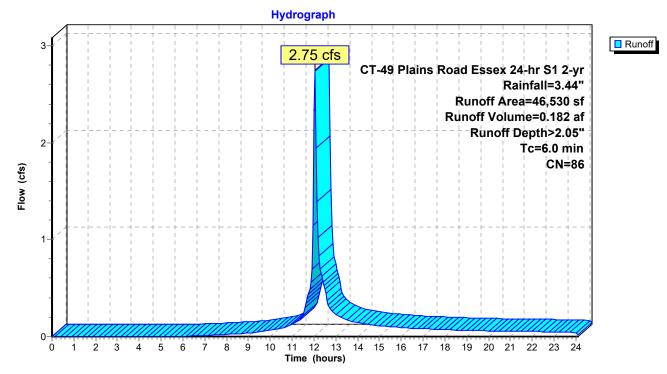
Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 20: PRWS 20	Runoff Area=46,530 sf 68.29% Impervious Runoff Depth>2.05" Tc=6.0 min CN=86 Runoff=2.75 cfs 0.182 af
Subcatchment 21: PRWS 21	Runoff Area=17,460 sf 64.15% Impervious Runoff Depth>1.96" Tc=0.0 min CN=85 Runoff=1.20 cfs 0.066 af
Subcatchment 22: PRWS 22	Runoff Area=16,110 sf 78.90% Impervious Runoff Depth>2.39" Tc=6.0 min CN=90 Runoff=1.10 cfs 0.074 af
Pond 20S: Water Quality Basin	Peak Elev=33.80' Storage=7,225 cf Inflow=3.42 cfs 0.248 af Outflow=0.96 cfs 0.189 af
Pond 21SA: Water Quality Basin	Peak Elev=37.43' Storage=1,939 cf Inflow=1.20 cfs 0.066 af Outflow=1.14 cfs 0.066 af
Pond 22SB: Underground 22 Discarded=0.10 cfs	Peak Elev=37.74' Storage=0.024 af Inflow=1.10 cfs 0.074 af 0.074 af Primary=0.00 cfs 0.000 af Outflow=0.10 cfs 0.074 af

Total Runoff Area = 1.839 ac Runoff Volume = 0.321 af Average Runoff Depth = 2.10" 30.48% Pervious = 0.560 ac 69.52% Impervious = 1.278 ac

Summary for Subcatchment 20: PRWS 20

Runoff = 2.75 cfs @ 12.04 hrs, Volume= 0.182 af, Depth> 2.05" Routed to Pond 20S : Water Quality Basin

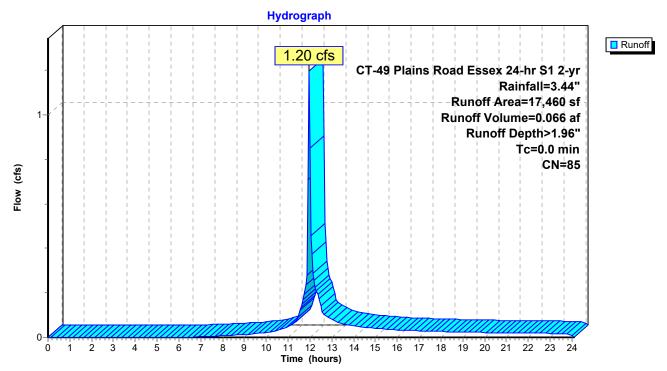

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 2-yr Rainfall=3.44"

Area (sf)	CN	Description				
14,755	61	>75% Grass cover, Good, HSG B				
29,400	98	Paved parking, HSG B				
2,375	98	Unconnected roofs, HSG B				
46,530	86	Weighted Average				
14,755		31.71% Pervious Area				
31,775		68.29% Impervious Area				
2,375		7.47% Unconnected				
Tc Length	Slop	be Velocity Capacity Description				

(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)
6.0				

Direct Entry,

Subcatchment 20: PRWS 20

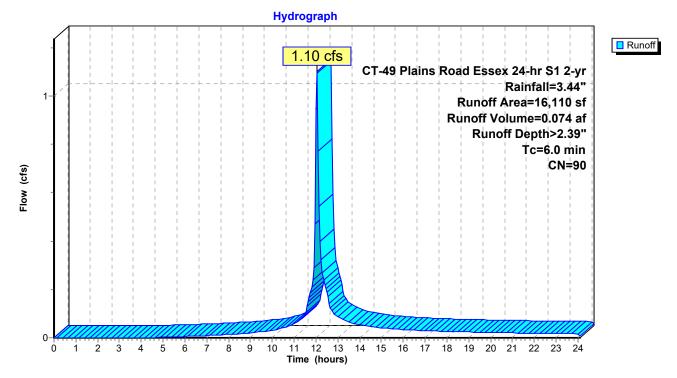

Summary for Subcatchment 21: PRWS 21

Runoff = 1.20 cfs @ 11.95 hrs, Volume= 0.066 af, Depth> 1.96" Routed to Pond 21SA : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 2-yr Rainfall=3.44"

Area (sf)	CN	Description
6,260	61	>75% Grass cover, Good, HSG B
11,200	98	Paved parking, HSG B
17,460	85	Weighted Average
6,260		35.85% Pervious Area
11,200		64.15% Impervious Area

Subcatchment 21: PRWS 21

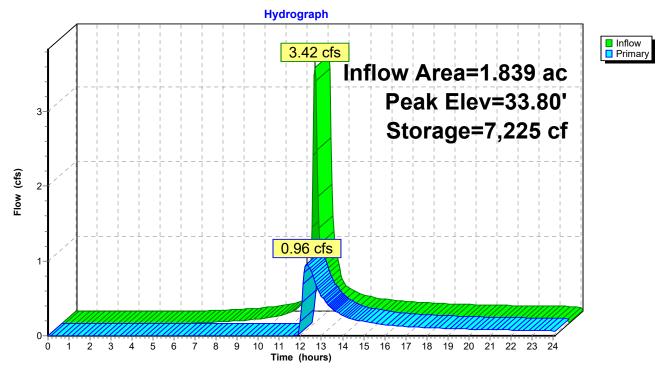

Summary for Subcatchment 22: PRWS 22

Runoff = 1.10 cfs @ 12.04 hrs, Volume= 0.074 af, Depth> 2.39" Routed to Pond 22SB : Underground 22

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 2-yr Rainfall=3.44"

rea (sf)	CN	Description				
12,500	98	Roofs, HSG	βB			
210	98	Paved park	ing, HSG B			
3,400	61	>75% Gras	s cover, Go	ood, HSG B		
16,110	90	Weighted Average				
3,400		21.10% Pervious Area				
12,710		78.90% Impervious Area				
Length			Capacity	Description		
(feet)	(ft/ft)	(ft/sec)	(cfs)			
				Direct Entry, MIn. TR-55 TC		
	12,500 210 <u>3,400</u> 16,110 3,400 12,710	12,500 98 1 210 98 1 3,400 61 3 16,110 90 2 3,400 2 12,710 3 Length Slope	12,500 98 Roofs, HSG 210 98 Paved park 3,400 61 >75% Gras 16,110 90 Weighted A 3,400 21.10% Per 12,710 78.90% Imp Length Slope Velocity	12,50098Roofs, HSG B21098Paved parking, HSG B3,40061>75% Grass cover, Go16,11090Weighted Average3,40021.10% Pervious Area12,71078.90% Impervious AreaLengthSlopeVelocityCapacity		

Subcatchment 22: PRWS 22

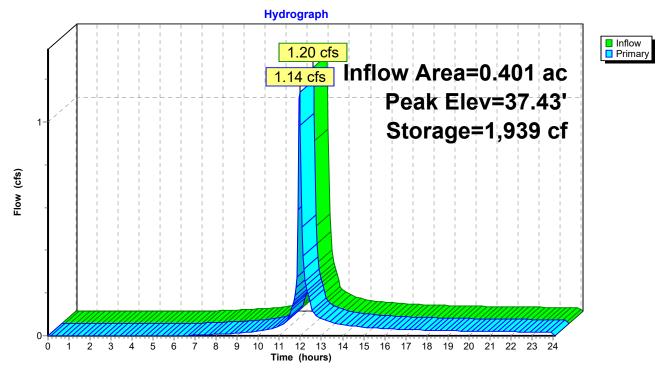


Summary for Pond 20S: Water Quality Basin

Inflow Area = Inflow = Outflow = Primary = Routed to	3.42 cfs @ 0.96 cfs @) 12.02 h) 12.29 h) 12.29 h	mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume=	0.248 af	2-yr event 72%, Lag= 16.0 min	
Starting Elev:	= 32.80' Surf.Ar	ea= 3,942	= 0.00-24.10 hrs, dt sf Storage= 2,955 ea= 4,572 sf Stora	cf	′0 cf above start)	
	tention time= 327 ss det. time= 85.		lculated for 0.121 af 3.7 - 838.4)	(49% of inflow)		
Volume	Invert Avail	.Storage	Storage Description	n		
#1		3,158 cf			below (Recalc)	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
32.00	3,450	299.0	0	0	3,450	
33.00	4,070	311.0	3,756	3,756	4,108	
34.00	4,700			8,137	4,746	
35.00	5,350	335.0		13,158	5,501	
Device Rou	0		et Devices			_
#1 Prin #2 Prin		34.50' 10.0' long + 0.5 '/' SideZ x 3.0' breadth Broad-Crested Rectangular We Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 0.66 0.68 2.67 2.65 2.64 2.68 2.68 2.72 2.81 2.92 2.97 3.07 3.32 33.30' 12.0'' Vert. Orifice/Grate C= 0.600				lar Weir
Primary Out	Elow Max-0.06		ted to weir flow at lo			

Primary OutFlow Max=0.96 cfs @ 12.29 hrs HW=33.80' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

-2=Orifice/Grate (Orifice Controls 0.96 cfs @ 2.41 fps)



Pond 20S: Water Quality Basin

Summary for Pond 21SA: Water Quality Basin

Outflow = Primary =	= 1.20 cfs (= 1.14 cfs (@ 11.95 h @ 11.97 h @ 11.97 h	rs, Volume= rs, Volume= rs, Volume=	Depth > 1.96" for 0.066 af 0.066 af, Atten= 0.066 af	2-yr event 5%, Lag= 0.7 min	
Starting Elev	Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Starting Elev= 37.40' Surf.Area= 1,493 sf Storage= 1,899 cf Peak Elev= 37.43' @ 11.97 hrs Surf.Area= 1,508 sf Storage= 1,939 cf (39 cf above start)					
	etention time= 40 ass det. time= 0.		culated for 0.022 a .1 - 837.5)	f (34% of inflow)		
Volume	Invert Ava	ail.Storage	Storage Description	on		
#1	35.00'	2,903 cf	Custom Stage Da	ata (Irregular) Listed	below (Recalc)	
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
35.00	166	238.0	0	0	166	
36.00	681	264.0	394	394	1,235	
07.00	1,259	291.0	955	1,350	2,459	
37.00	1,200	201.0	300	1,000		
37.00 37.50	1,554	298.0	702	2,052	2,819	
	,				2,819 3,143	
37.50 38.00	1,554 1,856	298.0 304.0 nvert Outle	702 851 et Devices	2,052 2,903		

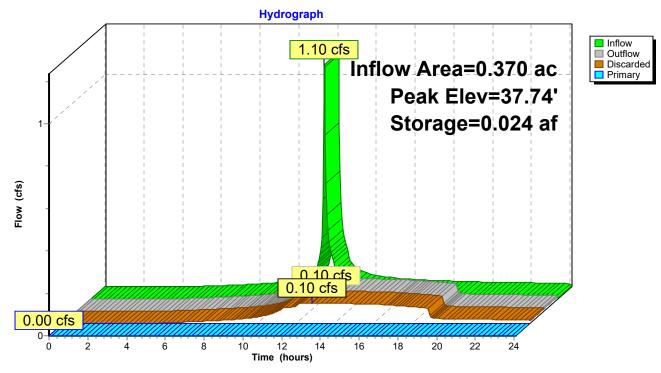
Primary OutFlow Max=0.97 cfs @ 11.97 hrs HW=37.42' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.97 cfs @ 0.51 fps)

Pond 21SA: Water Quality Basin

Summary for Pond 22SB: Underground 22

Inflow Area =	0.370 ac, 7	78.90% Impervious, Infl	ow Depth > 2.39" for 2-yr event		
Inflow =	1.10 cfs @	12.04 hrs, Volume=	0.074 af		
Outflow =	0.10 cfs @	12.87 hrs, Volume=	0.074 af, Atten= 91%, Lag= 49.8 min		
Discarded =	0.10 cfs @	12.87 hrs, Volume=	0.074 af		
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af		
Routed to Pond	20S : Water	Quality Basin			
Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs					
Peak Elev= 37.74'	@ 12.87 hrs	Surf.Area= 0.072 ac	Storage= 0.024 af		

Plug-Flow detention time= 81.9 min calculated for 0.074 af (100% of inflow) Center-of-Mass det. time= 81.4 min (900.2 - 818.7)


Volume	Invert	Avail.Storage	Storage Description
#1A	37.00'	0.034 af	27.00'W x 116.39'L x 2.00'H Field A
			0.144 af Overall - 0.030 af Embedded = 0.114 af x 30.0% Voids
#2A	37.50'	0.030 af	ADS_StormTech SC-160LP +Cap x 192 Inside #1
			Effective Size= 18.0"W x 12.0"H => 0.96 sf x 7.12'L = 6.8 cf
			Overall Size= 25.0"W x 12.0"H x 7.56'L with 0.44' Overlap
			192 Chambers in 12 Rows
		0.064 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	37.00'	1.000 in/hr Exfiltration over Wetted area Conductivity to Groundwater Elevation = 34.00'
#2	Primary	38.40'	4.0' long + 1.0 '/' SideZ x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Discarded OutFlow Max=0.10 cfs @ 12.87 hrs HW=37.74' (Free Discharge) **1=Exfiltration** (Controls 0.10 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=37.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 49 Plains Road Proposed Inflitration CT-49 Plains Road Essex 24-hr S1 2-yr Rainfall=3.44"Prepared by Doane EnginneringPrinted 2/9/2023HydroCAD® 10.10-7c s/n 12513 © 2022 HydroCAD Software Solutions LLCPage 24

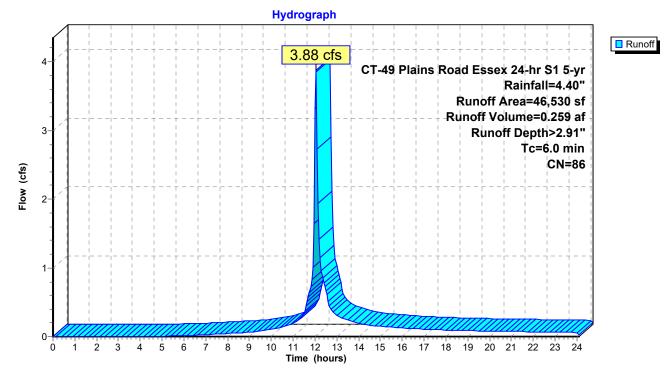
Pond 22SB: Underground 22

Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 20: PRWS 20	Runoff Area=46,530 sf 68.29% Impervious Runoff Depth>2.91" Tc=6.0 min CN=86 Runoff=3.88 cfs 0.259 af
Subcatchment 21: PRWS 21	Runoff Area=17,460 sf 64.15% Impervious Runoff Depth>2.82" Tc=0.0 min CN=85 Runoff=1.71 cfs 0.094 af
Subcatchment 22: PRWS 22	Runoff Area=16,110 sf 78.90% Impervious Runoff Depth>3.30" Tc=6.0 min CN=90 Runoff=1.50 cfs 0.102 af
Pond 20S: Water Quality Basin	Peak Elev=34.07' Storage=8,479 cf Inflow=4.80 cfs 0.353 af Outflow=1.95 cfs 0.293 af
Pond 21SA: Water Quality Basin	Peak Elev=37.43' Storage=1,952 cf Inflow=1.71 cfs 0.094 af Outflow=1.65 cfs 0.094 af
Pond 22SB: Underground 22 Discarded=0.10 cf	Peak Elev=38.00' Storage=0.036 af Inflow=1.50 cfs 0.102 af s 0.102 af Primary=0.00 cfs 0.000 af Outflow=0.10 cfs 0.102 af

Total Runoff Area = 1.839 ac Runoff Volume = 0.455 af Average Runoff Depth = 2.97" 30.48% Pervious = 0.560 ac 69.52% Impervious = 1.278 ac

Summary for Subcatchment 20: PRWS 20

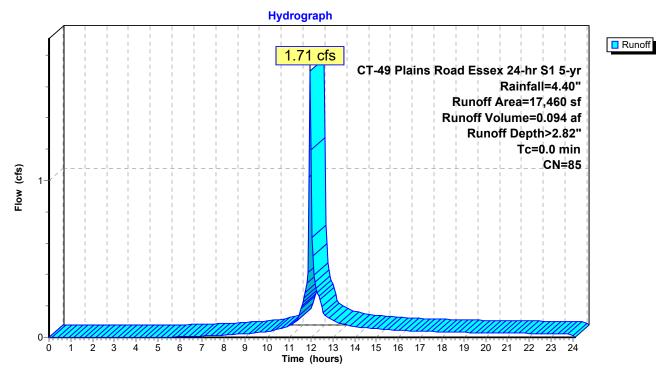

Runoff = 3.88 cfs @ 12.04 hrs, Volume= 0.259 af, Depth> 2.91" Routed to Pond 20S : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 5-yr Rainfall=4.40"

A	Area (sf)	CN	Description
	14,755	61	>75% Grass cover, Good, HSG B
	29,400	98	Paved parking, HSG B
	2,375	98	Unconnected roofs, HSG B
	46,530	86	Weighted Average
	14,755		31.71% Pervious Area
	31,775		68.29% Impervious Area
	2,375		7.47% Unconnected
Тс	Lenath	Slop	be Velocity Capacity Description

	0	 (ft/sec)	(cfs)	Description	
6.0		 		Direct Entry,	

Subcatchment 20: PRWS 20

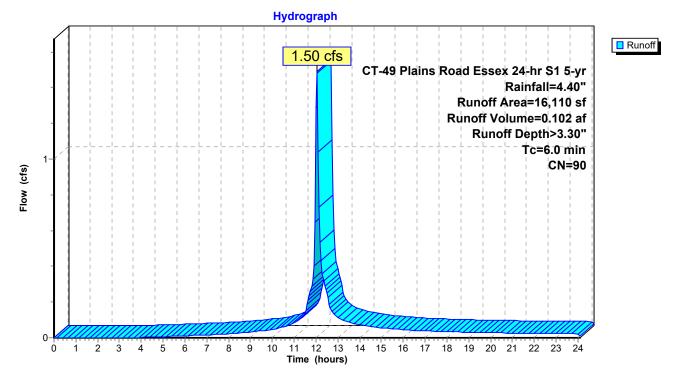

Summary for Subcatchment 21: PRWS 21

Runoff = 1.71 cfs @ 11.95 hrs, Volume= 0.094 af, Depth> 2.82" Routed to Pond 21SA : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 5-yr Rainfall=4.40"

Area (sf)	CN	Description
6,260	61	>75% Grass cover, Good, HSG B
11,200	98	Paved parking, HSG B
17,460	85	Weighted Average
6,260		35.85% Pervious Area
11,200		64.15% Impervious Area

Subcatchment 21: PRWS 21

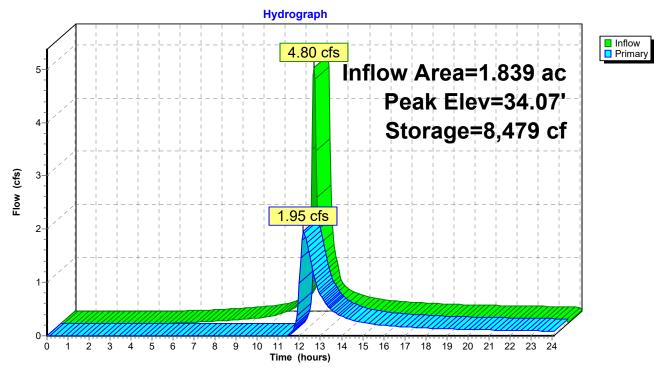

Summary for Subcatchment 22: PRWS 22

Runoff = 1.50 cfs @ 12.04 hrs, Volume= 0.102 af, Depth> 3.30" Routed to Pond 22SB : Underground 22

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 5-yr Rainfall=4.40"

Α	rea (sf)	CN [Description		
	12,500	98 F	Roofs, HSG	ЪВ	
	210	98 F	Paved park	ing, HSG B	
	3,400	61 >	-75% Gras	s cover, Go	bod, HSG B
	16,110	90 \	Veighted A	verage	
	3,400	2	21.10% Per	vious Area	
	12,710	7	'8.90% Imp	pervious Are	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry, MIn. TR-55 TC

Subcatchment 22: PRWS 22

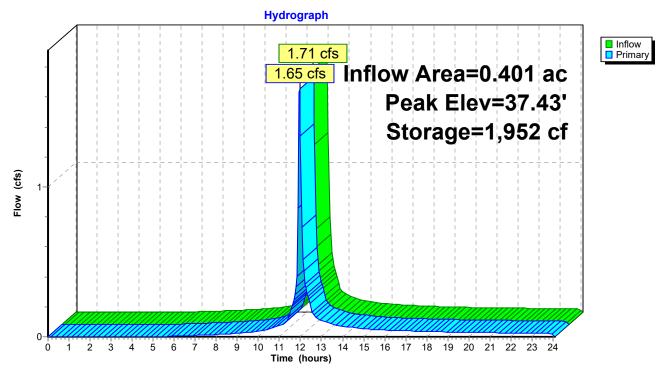

Summary for Pond 20S: Water Quality Basin

Inflow Area = Inflow = Outflow = Primary = Routed to nor	4.80 cfs @ 1.95 cfs @	12.02 hr 12.19 hr 12.19 hr	npervious, Inflow D rs, Volume= rs, Volume= rs, Volume=	0.353 af	5-yr event 59%, Lag= 10.0 min		
Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Starting Elev= 32.80' Surf.Area= 3,942 sf Storage= 2,955 cf Peak Elev= 34.07' @ 12.19 hrs Surf.Area= 4,746 sf Storage= 8,479 cf (5,525 cf above start)							
Plug-Flow deten Center-of-Mass			culated for 0.224 af 6.0 - 825.5)	(64% of inflow)			
Volume In	vert Avail.	Storage	Storage Description	า			
			Custom Stage Dat		below (Recalc)		
			-				
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
32.00	3,450	299.0	0	0	3,450		
33.00	4,070	311.0	3,756	3,756	4,108		
34.00		322.0	4,381	8,137	4,746		
35.00	5,350	335.0	5,021	13,158	5,501		
Device Routing			et Devices				
#1 Primary	y 34.5				road-Crested Rectang		
					20 1.40 1.60 1.80 2.00)	
			3.00 3.50 4.00 4.				
					2.64 2.64 2.68 2.68		
			2.81 2.92 2.97 3.				
#2 Primary	y 33.3		Vert. Orifice/Grate				
		Limit	ed to weir flow at lov	w heads			
		6 @ 10 1	0 hra 1111-24 07'	(Free Discharge)			

Primary OutFlow Max=1.94 cfs @ 12.19 hrs HW=34.07' (Free Discharge)

-1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

-2=Orifice/Grate (Orifice Controls 1.94 cfs @ 2.99 fps)



Pond 20S: Water Quality Basin

Summary for Pond 21SA: Water Quality Basin

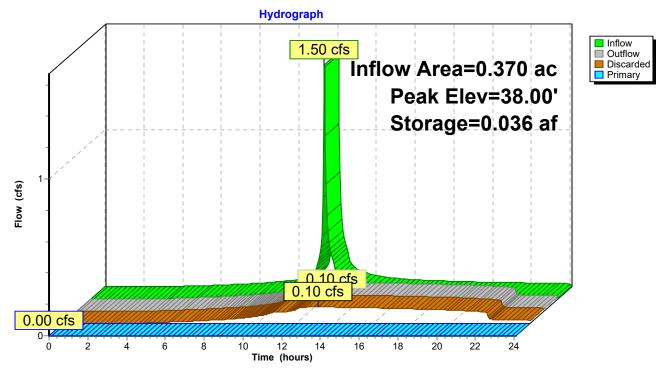
Outflow Primary	= 1.71 = 1.65	1 cfs @ 5 cfs @ 5 cfs @	11.95 hrs, 11.96 hrs, 11.96 hrs,	ervious, Inflow De Volume= Volume= Volume= sin	0.094 af	5-yr event 3%, Lag= 0.5 min	
Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Starting Elev= 37.40' Surf.Area= 1,493 sf Storage= 1,899 cf Peak Elev= 37.43' @ 11.96 hrs Surf.Area= 1,514 sf Storage= 1,952 cf (52 cf above start)							
	Plug-Flow detention time= 267.1 min calculated for 0.050 af (54% of inflow) Center-of-Mass det. time= 0.6 min (824.9 - 824.4)						
Volume	Invert	Avail.St	orage S [.]	torage Description			
#1	35.00'	2,9	903 cf C	ustom Stage Data	a (Irregular) Listed	below (Recalc)	
Elevation (feet)	Surf., (s	Area l sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
35.00	.	166	238.0	0	0	166	
36.00		681	264.0	394	394	1,235	
37.00		,259	291.0	955	1,350	2,459	
37.50		,554	298.0	702	2,052	2,819	
38.00	1	,856	304.0	851	2,903	3,143	
38.00	1 outing	,856 Invert	Outlet [Devices		3,143 umns X 9 rows C= 0.600	

Primary OutFlow Max=1.52 cfs @ 11.96 hrs HW=37.43' (Free Discharge) **1=Orifice/Grate** (Weir Controls 1.52 cfs @ 0.60 fps)

Pond 21SA: Water Quality Basin

Summary for Pond 22SB: Underground 22

Outflow = Discarded = Primary =	= 1. = 0. = 0. = 0.	.370 ac, 78.90% 50 cfs @ 12.04 10 cfs @ 13.16 10 cfs @ 13.16 00 cfs @ 0.00)S : Water Quality	hrs, Volume= 0.102 af, Atten= 93%, Lag= 66.9 min hrs, Volume= 0.102 af hrs, Volume= 0.000 af				
Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Peak Elev= 38.00' @ 13.16 hrs Surf.Area= 0.072 ac Storage= 0.036 af							
	Plug-Flow detention time= 128.2 min calculated for 0.101 af (100% of inflow) Center-of-Mass det. time= 127.5 min(934.8 - 807.3)						
Volume	Invert	Avail.Storage	Storage Description				
#1A	37.00'	0.034 af	27.00'W x 116.39'L x 2.00'H Field A				
#2A	37.50'	0.030 af	0.144 af Overall - 0.030 af Embedded = 0.114 af x 30.0% Voids ADS_StormTech SC-160LP +Cap x 192 Inside #1 Effective Size= 18.0 "W x 12.0 "H => 0.96 sf x 7.12'L = 6.8 cf Overall Size= 25.0 "W x 12.0 "H x 7.56'L with 0.44' Overlap 192 Chambers in 12 Rows				


0.064 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	37.00'	1.000 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 34.00'
#2	Primary	38.40'	4.0' long + 1.0 '/' SideZ x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Discarded OutFlow Max=0.10 cfs @ 13.16 hrs HW=38.00' (Free Discharge) **1=Exfiltration** (Controls 0.10 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=37.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

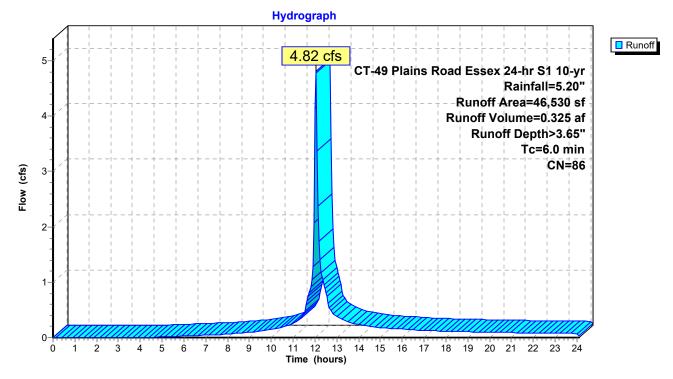
Pond 22SB: Underground 22

Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 20: PRWS 20	Runoff Area=46,530 sf 68.29% Impervious Runoff Depth>3.65" Tc=6.0 min CN=86 Runoff=4.82 cfs 0.325 af
Subcatchment 21: PRWS 21	Runoff Area=17,460 sf 64.15% Impervious Runoff Depth>3.55" Tc=0.0 min CN=85 Runoff=2.13 cfs 0.119 af
Subcatchment 22: PRWS 22	Runoff Area=16,110 sf 78.90% Impervious Runoff Depth>4.07" Tc=6.0 min CN=90 Runoff=1.82 cfs 0.125 af
Pond 20S: Water Quality Basin	Peak Elev=34.26' Storage=9,383 cf Inflow=5.93 cfs 0.444 af Outflow=2.59 cfs 0.382 af
Pond 21SA: Water Quality Basin	Peak Elev=37.44' Storage=1,960 cf Inflow=2.13 cfs 0.119 af Outflow=2.11 cfs 0.119 af
Pond 22SB: Underground 22 Discarded=0.11 cf	Peak Elev=38.28' Storage=0.048 af Inflow=1.82 cfs 0.125 af s 0.124 af Primary=0.00 cfs 0.000 af Outflow=0.11 cfs 0.124 af

Total Runoff Area = 1.839 ac Runoff Volume = 0.569 af Average Runoff Depth = 3.72" 30.48% Pervious = 0.560 ac 69.52% Impervious = 1.278 ac

Summary for Subcatchment 20: PRWS 20

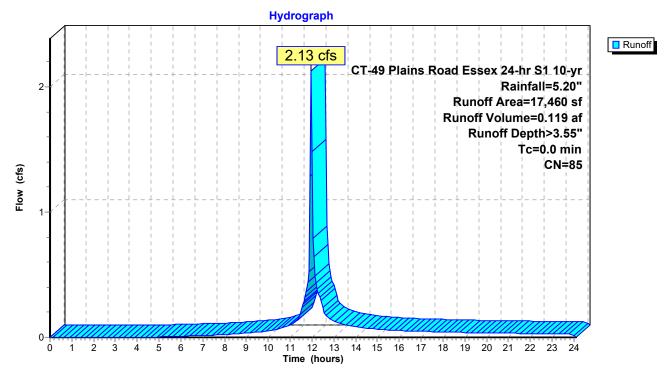

Runoff = 4.82 cfs @ 12.04 hrs, Volume= 0.325 af, Depth> 3.65" Routed to Pond 20S : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 10-yr Rainfall=5.20"

Area (sf)	CN	Description					
14,755	61	>75% Grass cover, Good, HSG B					
29,400	98	Paved parking, HSG B					
2,375	98	Unconnected roofs, HSG B					
46,530	86	Weighted Average					
14,755		31.71% Pervious Area					
31,775		68.29% Impervious Area					
2,375	2,375 7.47% Unconnected						
Tc Length	Slop	pe Velocity Capacity Description					

_		0	 (ft/sec)	 Description	
	6.0			Direct Entry	,

Subcatchment 20: PRWS 20

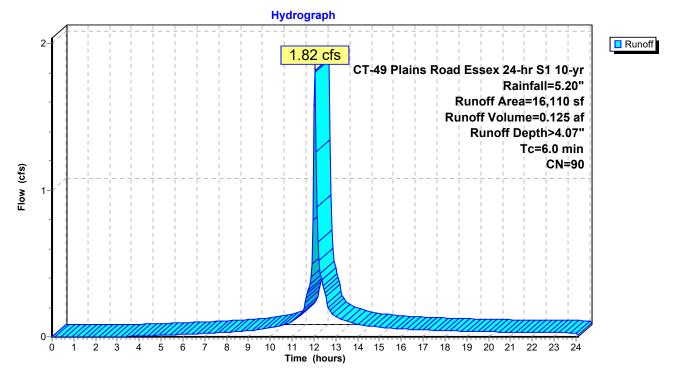

Summary for Subcatchment 21: PRWS 21

Runoff = 2.13 cfs @ 11.95 hrs, Volume= 0.119 af, Depth> 3.55" Routed to Pond 21SA : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 10-yr Rainfall=5.20"

Area (sf)	CN	Description
6,260	61	>75% Grass cover, Good, HSG B
11,200	98	Paved parking, HSG B
17,460	85	Weighted Average
6,260		35.85% Pervious Area
11,200		64.15% Impervious Area

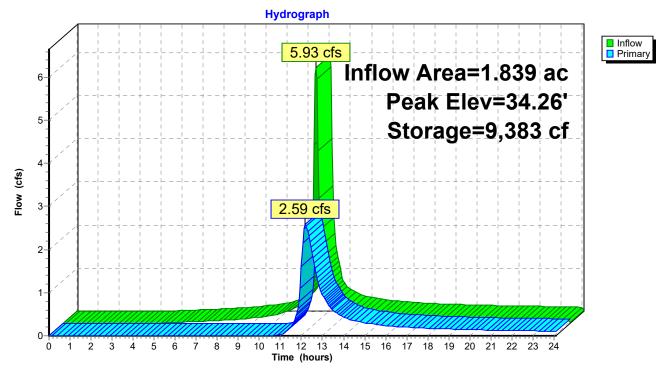
Subcatchment 21: PRWS 21


Summary for Subcatchment 22: PRWS 22

Runoff = 1.82 cfs @ 12.04 hrs, Volume= 0.125 af, Depth> 4.07" Routed to Pond 22SB : Underground 22

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 10-yr Rainfall=5.20"

Α	rea (sf)	CN	Description						
	12,500	98	Roofs, HSG B						
	210	98	Paved park	ing, HSG B	3				
	3,400	61	>75% Gras	s cover, Go	bod, HSG B				
	16,110	90	Weighted A	verage					
	3,400		21.10% Pervious Area						
	12,710		78.90% Imp	pervious Ar	ea				
_									
Tc	Length	Slope Velocity Capacity Description							
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)					
6.0					Direct Entry, MIn. TR-55 TC				

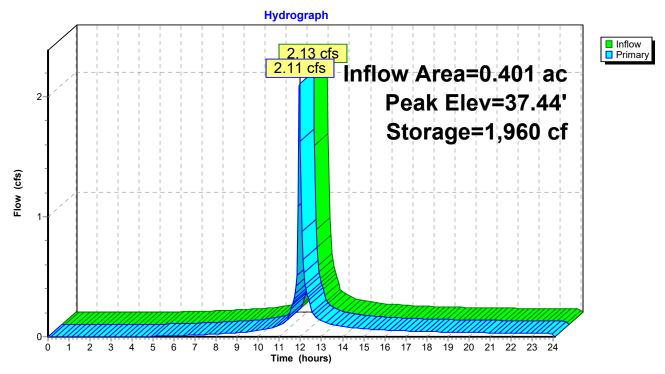


Summary for Pond 20S: Water Quality Basin

Inflow Area = Inflow = Outflow = Primary = Routed to none	5.93 cfs @ 2.59 cfs @ 2.59 cfs @	12.02 hr 12.17 hr 12.17 hr	npervious, Inflow D s, Volume= s, Volume= s, Volume=	0.444 af	10-yr event 56%, Lag= 9.1 min	
Starting Elev= 32.8	80' Surf.Area	= 3,942 s	= 0.00-24.10 hrs, dt= sf Storage= 2,955 ea= 4,865 sf Stora	cf	28 cf above start)	
Plug-Flow detentic Center-of-Mass de			culated for 0.314 af 2.2 - 817.3)	(71% of inflow)		
Volume Inve	ert Avail.St	torage	Storage Description	n		
#1 32.0	0' 13,	158 cf	Custom Stage Dat	ta (Irregular) Listed	below (Recalc)	
		Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>	
32.00	3,450	299.0	0	0	3,450	
33.00			3,756	3,756	4,108	
34.00	4,700		4,381	8,137	4,746	
35.00	5,350	335.0	5,021	13,158	5,501	
Device Routing	Inver		t Devices			
#1 Primary 34.50' 10.0' long + 0.5 '/' SideZ x 3.0' breadth Broad-Crested Rectangular Weil #ad (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 0.65 2.65 2.64 2.68 2.68 #2 Primary 33.30' 12.0" Vert. Orifice/Grate C= 0.600 C= 0.600						
			ed to weir flow at lov			

Primary OutFlow Max=2.57 cfs @ 12.17 hrs HW=34.26' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

-2=Orifice/Grate (Orifice Controls 2.57 cfs @ 3.33 fps)



Pond 20S: Water Quality Basin

Summary for Pond 21SA: Water Quality Basin

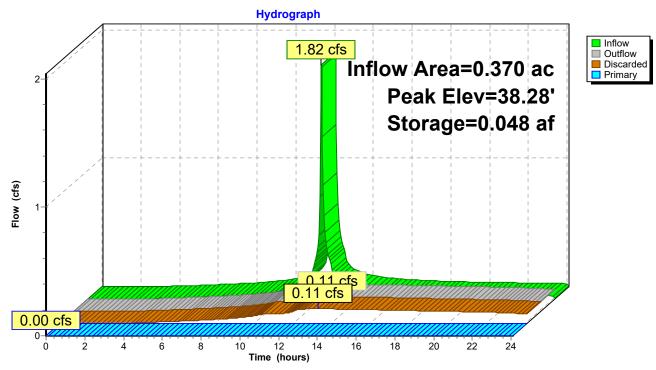
Outflow = Primary =	2.13 cfs @ 2.11 cfs @	 11.95 h 11.96 h 11.96 h 	mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume= Basin	0.119 af	10-yr event 1%, Lag= 0.4 min				
Starting Elev= Peak Elev= 3	Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Starting Elev= 37.40' Surf.Area= 1,493 sf Storage= 1,899 cf Peak Elev= 37.44' @ 11.96 hrs Surf.Area= 1,517 sf Storage= 1,960 cf (61 cf above start)								
	ention time= 22 ss det. time= 0.6		culated for 0.075 af .7 - 816.1)	(63% of inflow)					
Volume	Invert Avai	I.Storage	Storage Description	n					
#1	35.00'	2,903 cf	Custom Stage Dat	ta (Irregular) Listed	below (Recalc)				
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area				
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)				
				-					
(feet)	<u>(sq-ft)</u> 166 681	(feet)	(cubic-feet) 0 394	(cubic-feet) 0 394	(sq-ft)				
(feet) 35.00 36.00 37.00	<u>(sq-ft)</u> 166 681 1,259	(feet) 238.0 264.0 291.0	(cubic-feet) 0 394 955	(cubic-feet) 0 394 1,350	<u>(sq-ft)</u> 166 1,235 2,459				
(feet) 35.00 36.00 37.00 37.50	<u>(sq-ft)</u> 166 681 1,259 1,554	(feet) 238.0 264.0 291.0 298.0	(cubic-feet) 0 394 955 702	(cubic-feet) 0 394 1,350 2,052	<u>(sq-ft)</u> 166 1,235 2,459 2,819				
(feet) 35.00 36.00 37.00	<u>(sq-ft)</u> 166 681 1,259	(feet) 238.0 264.0 291.0	(cubic-feet) 0 394 955	(cubic-feet) 0 394 1,350	<u>(sq-ft)</u> 166 1,235 2,459				
(feet) 35.00 36.00 37.00 37.50	(sq-ft) 166 681 1,259 1,554 1,856 ting In	(feet) 238.0 264.0 291.0 298.0 304.0 vert Outle	(cubic-feet) 0 394 955 702 851 et Devices	(cubic-feet) 0 394 1,350 2,052 2,903	<u>(sq-ft)</u> 166 1,235 2,459 2,819				

Primary OutFlow Max=1.92 cfs @ 11.96 hrs HW=37.44' (Free Discharge) **1=Orifice/Grate** (Weir Controls 1.92 cfs @ 0.64 fps)

Pond 21SA: Water Quality Basin

Summary for Pond 22SB: Underground 22

Outflow Discarded Primary	= 1 = 0 = 0 = 0	.82 cfs @ 12.04	hrs, Volume= 0.124 af, Atten= 94%, Lag= 77.9 min hrs, Volume= 0.124 af hrs, Volume= 0.000 af
			n= 0.00-24.10 hrs, dt= 0.05 hrs Area= 0.072 ac Storage= 0.048 af
		ime= 167.3 min c ime= 161.4 min (alculated for 0.124 af (99% of inflow) 961.4 - 800.1)
Volume	Invert	Avail.Storage	Storage Description
#1A	37.00'	0.034 af	27.00'W x 116.39'L x 2.00'H Field A 0.144 af Overall - 0.030 af Embedded = 0.114 af x 30.0% Voids
#2A	37.50'	0.030 af	ADS_StormTech SC-160LP +Cap x 192 Inside #1 Effective Size= 18.0"W x 12.0"H => 0.96 sf x 7.12'L = 6.8 cf Overall Size= 25.0"W x 12.0"H x 7.56'L with 0.44' Overlap 192 Chambers in 12 Rows


0.064 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	37.00'	1.000 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 34.00'
#2	Primary	38.40'	4.0' long + 1.0 '/' SideZ x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Discarded OutFlow Max=0.11 cfs @ 13.34 hrs HW=38.28' (Free Discharge) **1=Exfiltration** (Controls 0.11 cfs)

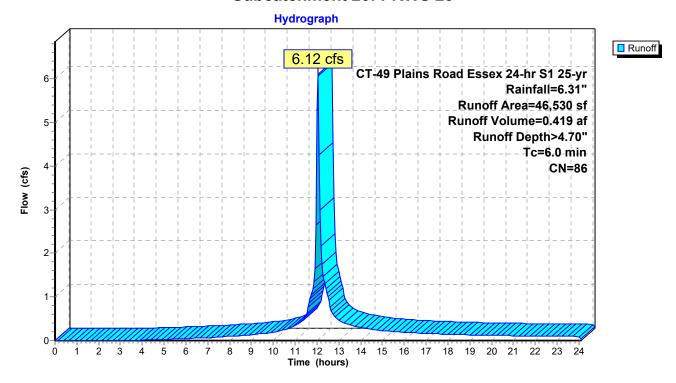
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=37.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 22SB: Underground 22

Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 20: PRWS 20	Runoff Area=46,530 sf 68.29% Impervious Runoff Depth>4.70" Tc=6.0 min CN=86 Runoff=6.12 cfs 0.419 af
Subcatchment 21: PRWS 21	Runoff Area=17,460 sf 64.15% Impervious Runoff Depth>4.60" Tc=0.0 min CN=85 Runoff=2.72 cfs 0.154 af
Subcatchment 22: PRWS 22	Runoff Area=16,110 sf 78.90% Impervious Runoff Depth>5.15" Tc=6.0 min CN=90 Runoff=2.26 cfs 0.159 af
Pond 20S: Water Quality Basin	Peak Elev=34.49' Storage=10,533 cf Inflow=7.51 cfs 0.586 af Outflow=3.15 cfs 0.522 af
Pond 21SA: Water Quality Basin	Peak Elev=37.45' Storage=1,971 cf Inflow=2.72 cfs 0.154 af Outflow=2.72 cfs 0.154 af
Pond 22SB: Underground 22 Discarded=0.12 cf	Peak Elev=38.50' Storage=0.053 af Inflow=2.26 cfs 0.159 af s 0.136 af Primary=0.32 cfs 0.013 af Outflow=0.45 cfs 0.150 af

Total Runoff Area = 1.839 ac Runoff Volume = 0.731 af Average Runoff Depth = 4.77" 30.48% Pervious = 0.560 ac 69.52% Impervious = 1.278 ac

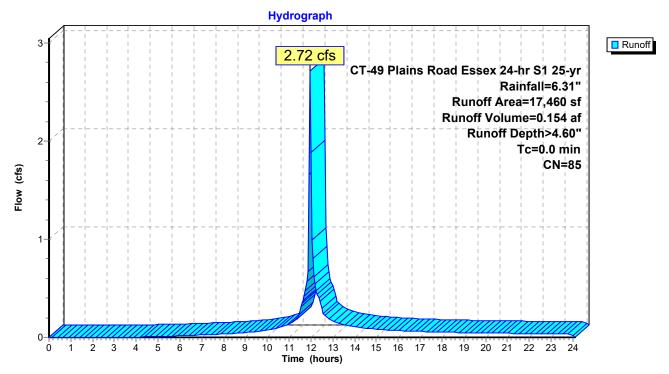

Summary for Subcatchment 20: PRWS 20

Runoff = 6.12 cfs @ 12.04 hrs, Volume= 0.419 af, Depth> 4.70" Routed to Pond 20S : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 25-yr Rainfall=6.31"

Area (sf)	CN	Description						
14,755	61	>75% Grass cover, Good, HSG B						
29,400	98	Paved parking, HSG B						
2,375	98	Unconnected roofs, HSG B						
46,530	86	Weighted Average						
14,755		31.71% Pervious Area						
31,775		68.29% Impervious Area						
2,375		7.47% Unconnected						
Tc Length	Slop	be Velocity Capacity Description						

Subcatchment 20: PRWS 20

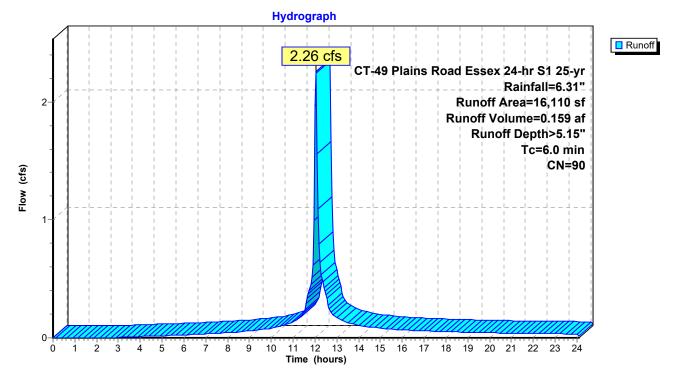

Summary for Subcatchment 21: PRWS 21

Runoff = 2.72 cfs @ 11.95 hrs, Volume= 0.154 af, Depth> 4.60" Routed to Pond 21SA : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 25-yr Rainfall=6.31"

Area (sf)	CN	Description
6,260	61	>75% Grass cover, Good, HSG B
11,200	98	Paved parking, HSG B
17,460	85	Weighted Average
6,260		35.85% Pervious Area
11,200		64.15% Impervious Area

Subcatchment 21: PRWS 21

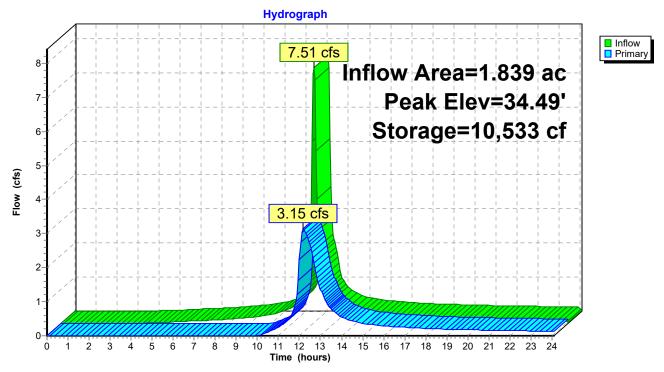

Summary for Subcatchment 22: PRWS 22

Runoff = 2.26 cfs @ 12.04 hrs, Volume= 0.159 af, Depth> 5.15" Routed to Pond 22SB : Underground 22

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 25-yr Rainfall=6.31"

Α	rea (sf)	CN	Description						
	12,500	98	Roofs, HSG B						
	210	98	Paved park	ing, HSG B	8				
	3,400	61	>75% Gras	s cover, Go	bod, HSG B				
	16,110	90	Weighted A	verage					
	3,400		21.10% Pervious Area						
	12,710		78.90% Impervious Area						
_									
Tc	Length		Slope Velocity Capacity Description						
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)					
6.0					Direct Entry, MIn. TR-55 TC				

Subcatchment 22: PRWS 22

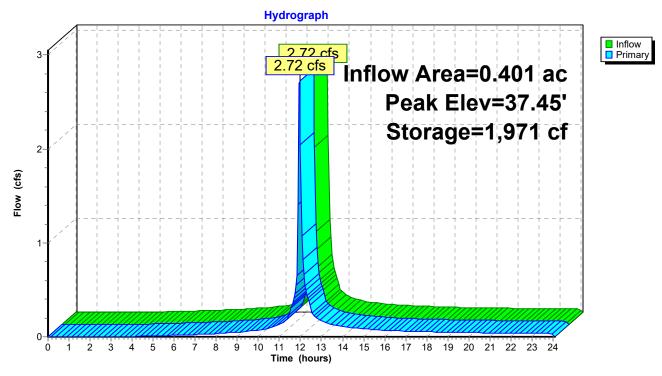

Summary for Pond 20S: Water Quality Basin

Inflow Area = Inflow = Outflow = Primary = Routed to n	7.51 cfs @ 3.15 cfs @	12.02 hr 12.18 hr 12.18 hr	npervious, Inflow D rs, Volume= rs, Volume= rs, Volume=	0.586 af	25-yr event 58%, Lag= 9.4 min	
Starting Elev=	32.80' Surf.Are	ea= 3,942	= 0.00-24.10 hrs, dt= sf Storage= 2,955 ea= 5,015 sf Stora	cf	578 cf above start)	
	ntion time= 181 s det. time= 59.0		culated for 0.454 af 6.2 - 807.3)	(78% of inflow)		
Volume	Invert Avail.	Storage	Storage Description	n		
#1 3	32.00' 1	3,158 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)	
			-			
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
32.00	3,450	299.0	0	0	3,450	
33.00	4,070	311.0	3,756	3,756	4,108	
34.00	4,700	322.0	4,381	8,137	4,746	
35.00	5,350	335.0	5,021	13,158	5,501	
Device Routi	0		et Devices			
#1 Prima	ary 34.8				road-Crested Rectan	
					20 1.40 1.60 1.80 2.	00
			3.00 3.50 4.00 4			
					2.64 2.64 2.68 2.68	3
			2.81 2.92 2.97 3			
#2 Prima	ary 33.3		Vert. Orifice/Grat			
		Limit	ed to weir flow at lo	w heads		
	ow Max=2.14 a	fa @ 10 1	9 bro 1111/-21 10'	(Free Discharge)		

Primary OutFlow Max=3.14 cfs @ 12.18 hrs HW=34.49' (Free Discharge)

-1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

-2=Orifice/Grate (Orifice Controls 3.14 cfs @ 4.00 fps)



Pond 20S: Water Quality Basin

Summary for Pond 21SA: Water Quality Basin

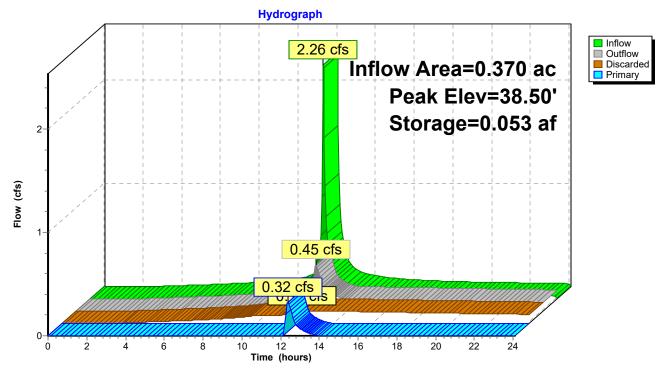
Outflow = Primary =	2.72 cfs (2.72 cfs (2) 11.95 h 2) 11.96 h 2) 11.96 h	mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume= Basin	0.154 af	25-yr event 0%, Lag= 0.3 min			
Starting Elev=	Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Starting Elev= 37.40' Surf.Area= 1,493 sf Storage= 1,899 cf Peak Elev= 37.45' @ 11.96 hrs Surf.Area= 1,522 sf Storage= 1,971 cf (72 cf above start)							
	ention time= 18 ss det. time= 0.6		culated for 0.110 af .6 - 807.0)	(72% of inflow)				
Volume	Invert Ava	I.Storage	Storage Description	n				
#1	35.00'	2,903 cf	Custom Stage Dat	ta (Irregular) Listed	below (Recalc)			
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
(feet)	<u>(sq-ft)</u> 166 681	(feet)	(cubic-feet) 0 394	(cubic-feet) 0 394	<u>(sq-ft)</u> 166 1,235			
(feet) 35.00 36.00 37.00	<u>(sq-ft)</u> 166 681 1,259	(feet) 238.0 264.0 291.0	(cubic-feet) 0 394 955	(cubic-feet) 0 394 1,350	<u>(sq-ft)</u> 166 1,235 2,459			
(feet) 35.00 36.00 37.00 37.50	(sq-ft) 166 681 1,259 1,554	(feet) 238.0 264.0 291.0 298.0	(cubic-feet) 0 394 955 702	(cubic-feet) 0 394 1,350 2,052	<u>(sq-ft)</u> 166 1,235 2,459 2,819			
(feet) 35.00 36.00 37.00	<u>(sq-ft)</u> 166 681 1,259	(feet) 238.0 264.0 291.0	(cubic-feet) 0 394 955	(cubic-feet) 0 394 1,350	<u>(sq-ft)</u> 166 1,235 2,459			
(feet) 35.00 36.00 37.00 37.50	(sq-ft) 166 681 1,259 1,554 1,856	(feet) 238.0 264.0 291.0 298.0 304.0 vert Outle	(cubic-feet) 0 394 955 702 851 et Devices	(cubic-feet) 0 394 1,350 2,052 2,903	<u>(sq-ft)</u> 166 1,235 2,459 2,819			

Primary OutFlow Max=2.49 cfs @ 11.96 hrs HW=37.45' (Free Discharge) **1=Orifice/Grate** (Weir Controls 2.49 cfs @ 0.70 fps)

Pond 21SA: Water Quality Basin

Summary for Pond 22SB: Underground 22

Outflow Discarded Primary	= 22 = ((= ()	2.26 cfs @ 12.04	hrs, Volume= 0.150 af, Atten= 80%, Lag= 21.0 min hrs, Volume= 0.136 af hrs, Volume= 0.013 af
			n= 0.00-24.10 hrs, dt= 0.05 hrs Area= 0.072 ac Storage= 0.053 af
		time= 168.8 min c time= 135.8 min (alculated for 0.149 af (94% of inflow) 928.1 - 792.2)
Volume	Invert	Avail.Storage	Storage Description
#1A	37.00'	0.034 af	27.00'W x 116.39'L x 2.00'H Field A
			0.144 af Overall - 0.030 af Embedded = 0.114 af x 30.0% Voids
#2A	37.50'	0.030 af	
			Effective Size= 18.0"W x 12.0"H => 0.96 sf x 7.12'L = 6.8 cf
			Overall Size= 25.0"W x 12.0"H x 7.56'L with 0.44' Overlap
			192 Chambers in 12 Rows


0.064 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	37.00'	1.000 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 34.00'
#2	Primary	38.40'	4.0' long + 1.0 '/' SideZ x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Discarded OutFlow Max=0.12 cfs @ 12.39 hrs HW=38.49' (Free Discharge) **1=Exfiltration** (Controls 0.12 cfs)

Primary OutFlow Max=0.32 cfs @ 12.39 hrs HW=38.49' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 0.32 cfs @ 0.83 fps)

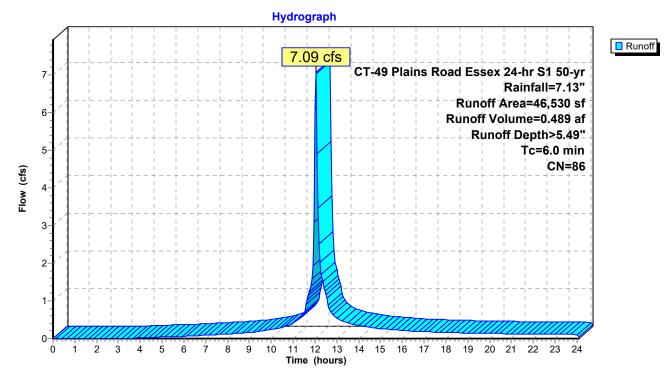
Pond 22SB: Underground 22

Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 20: PRWS 20	Runoff Area=46,530 sf 68.29% Impervious Runoff Depth>5.49" Tc=6.0 min CN=86 Runoff=7.09 cfs 0.489 af
Subcatchment 21: PRWS 21	Runoff Area=17,460 sf 64.15% Impervious Runoff Depth>5.38" Tc=0.0 min CN=85 Runoff=3.16 cfs 0.180 af
Subcatchment 22: PRWS 22	Runoff Area=16,110 sf 78.90% Impervious Runoff Depth>5.95" Tc=6.0 min CN=90 Runoff=2.60 cfs 0.183 af
Pond 20S: Water Quality Basin	Peak Elev=34.63' Storage=11,215 cf Inflow=8.71 cfs 0.696 af Outflow=4.57 cfs 0.631 af
Pond 21SA: Water Quality Basin	Peak Elev=37.45' Storage=1,980 cf Inflow=3.16 cfs 0.180 af Outflow=3.15 cfs 0.180 af
Pond 22SB: Underground 22 Discarded=0.12 cfs	Peak Elev=38.58' Storage=0.055 af Inflow=2.60 cfs 0.183 af 0.143 af Primary=0.86 cfs 0.028 af Outflow=0.99 cfs 0.170 af

Total Runoff Area = 1.839 acRunoff Volume = 0.852 afAverage Runoff Depth = 5.56"30.48% Pervious = 0.560 ac69.52% Impervious = 1.278 ac

Summary for Subcatchment 20: PRWS 20

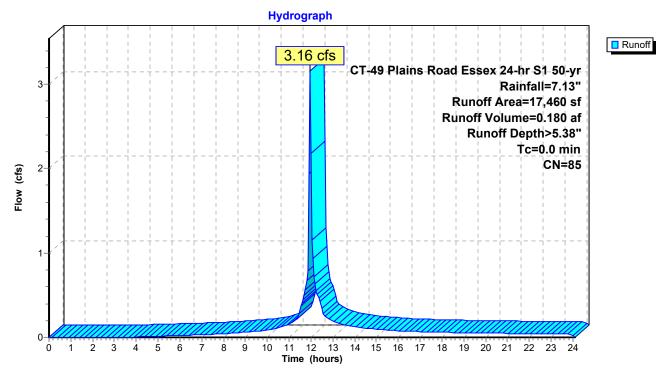

Runoff = 7.09 cfs @ 12.04 hrs, Volume= 0.489 af, Depth> 5.49" Routed to Pond 20S : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 50-yr Rainfall=7.13"

Area (sf)	CN	Description					
14,755	61	>75% Grass cover, Good, HSG B					
29,400	98	Paved parking, HSG B					
2,375	98	Unconnected roofs, HSG B					
46,530	86	Weighted Average					
14,755		31.71% Pervious Area					
31,775	1,775 68.29% Impervious Area						
2,375		7.47% Unconnected					
Tc Length	Slop	pe Velocity Capacity Description					

	0	 (ft/sec)	 Decemption	
6.0			Direct Entry	,

Subcatchment 20: PRWS 20

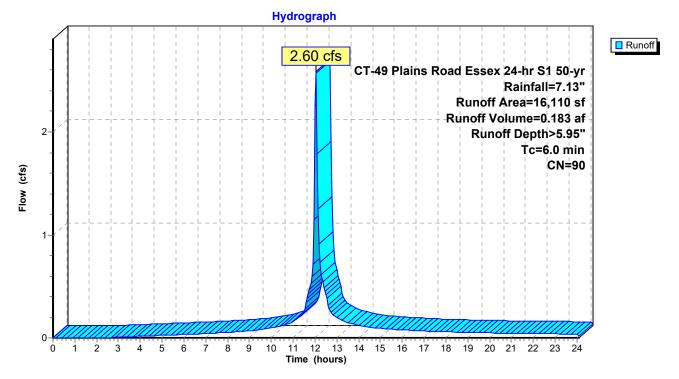

Summary for Subcatchment 21: PRWS 21

Runoff = 3.16 cfs @ 11.95 hrs, Volume= 0.180 af, Depth> 5.38" Routed to Pond 21SA : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 50-yr Rainfall=7.13"

Area (sf)	CN	Description
6,260	61	>75% Grass cover, Good, HSG B
11,200	98	Paved parking, HSG B
17,460	85	Weighted Average
6,260		35.85% Pervious Area
11,200		64.15% Impervious Area

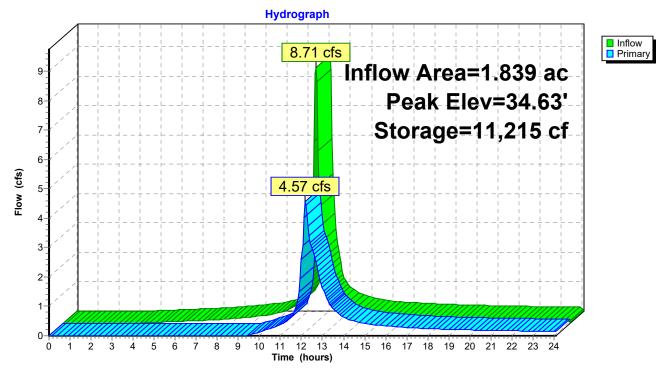
Subcatchment 21: PRWS 21


Summary for Subcatchment 22: PRWS 22

Runoff = 2.60 cfs @ 12.04 hrs, Volume= 0.183 af, Depth> 5.95" Routed to Pond 22SB : Underground 22

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 50-yr Rainfall=7.13"

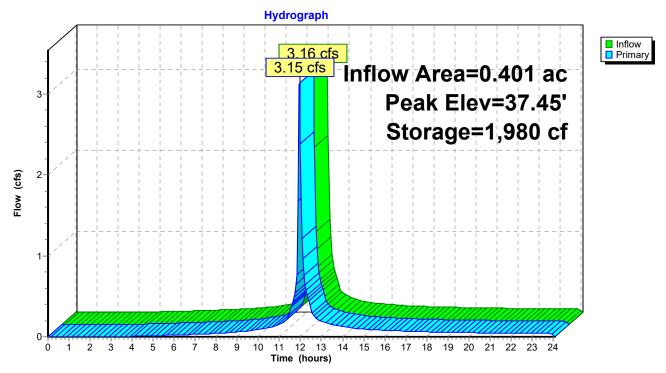
Α	rea (sf)	CN	CN Description					
	12,500	98	98 Roofs, HSG B					
	210	98	Paved parking, HSG B					
	3,400	61	>75% Gras	s cover, Go	bod, HSG B			
	16,110	90	90 Weighted Average					
	3,400		21.10% Pervious Area					
	12,710		78.90% Impervious Area					
_								
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)				
6.0					Direct Entry, MIn. TR-55 TC			


Subcatchment 22: PRWS 22

Summary for Pond 20S: Water Quality Basin

Inflow Area = 1.839 ac, 69.52% Impervious, Inflow Depth > 4.54" for 50-yr event Inflow = 8.71 cfs @ 12.02 hrs, Volume= 0.696 af Outflow = 4.57 cfs @ 12.17 hrs, Volume= 0.631 af, Atten= 48%, Lag= 8.9 min Primary = 4.57 cfs @ 12.17 hrs, Volume= 0.631 af Routed to nonexistent node 30									
Starting Elev= 32.8	Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Starting Elev= 32.80' Surf.Area= 3,942 sf Storage= 2,955 cf Peak Elev= 34.63' @ 12.17 hrs Surf.Area= 5,103 sf Storage= 11,215 cf (8,260 cf above start)								
			culated for 0.562 af	(81% of inflow)					
Center-of-Mass de	t. time= 54.9	9 min (855	5.6 - 800.7)						
Volume Inve	rt Avail.	Storage	Storage Description	ı		_			
#1 32.0	0' 1	3,158 cf	Custom Stage Dat	t a (Irregular) Listed	below (Recalc)	-			
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)				
32.00	3,450	299.0	0	0	3,450				
33.00	4,070	311.0	3,756	3,756	4,108				
34.00	4,700	322.0	4,381	8,137	4,746				
35.00	5,350	335.0	5,021	13,158	5,501				
Device Routing	Inve	ert Outle	t Devices			_			
#1 Primary	34.5	50' 10.0'	long + 0.5 '/' Side	Z x 3.0' breadth B	road-Crested Rectangula	ar Weir			
		Head	l (feet) 0.20 0.40 0	0.60 0.80 1.00 1.2	0 1.40 1.60 1.80 2.00				
			3.00 3.50 4.00 4.						
					2.64 2.64 2.68 2.68				
			2.81 2.92 2.97 3.						
#2 Primary	33.3	30° 12.0 "	Vert. Orifice/Grate C= 0.600						
		1	ed to weir flow at lov	v haada					

Primary OutFlow Max=4.49 cfs @ 12.17 hrs HW=34.62' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 1.06 cfs @ 0.86 fps) 2=Orifice/Grate (Orifice Controls 3.43 cfs @ 4.37 fps)



Pond 20S: Water Quality Basin

Summary for Pond 21SA: Water Quality Basin

Outflow = Primary =	3.16 cfs (3.15 cfs (D 11.95 h D 11.96 h D 11.96 h	npervious, Inflow D rs, Volume= rs, Volume= rs, Volume= Basin	0.180 af	50-yr event 1%, Lag= 0.3 min		
Starting Elev	Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Starting Elev= 37.40' Surf.Area= 1,493 sf Storage= 1,899 cf Peak Elev= 37.45' @ 11.96 hrs Surf.Area= 1,525 sf Storage= 1,980 cf (80 cf above start)						
	etention time= 16 ass det. time= 0.6		culated for 0.136 af .8 - 801.2)	(76% of inflow)			
Volume	Invert Ava	l.Storage	Storage Description	า			
#1	35.00'	2,903 cf	Custom Stage Dat	t a (Irregular) Listed	below (Recalc)		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
				-			
(feet) 35.00 36.00	<u>(sq-ft)</u> 166 681	(feet) 238.0 264.0	(cubic-feet) 0 394	(cubic-feet) 0 394	<u>(sq-ft)</u> 166 1,235		
(feet) 35.00 36.00 37.00	(sq-ft) 166 681 1,259	(feet) 238.0 264.0 291.0	(cubic-feet) 0 394 955	(cubic-feet) 0 394 1,350	<u>(sq-ft)</u> 166 1,235 2,459		
(feet) 35.00 36.00 37.00 37.50	(sq-ft) 166 681 1,259 1,554	(feet) 238.0 264.0 291.0 298.0	(cubic-feet) 0 394 955 702	(cubic-feet) 0 394 1,350 2,052	<u>(sq-ft)</u> 166 1,235 2,459 2,819		
(feet) 35.00 36.00 37.00	(sq-ft) 166 681 1,259	(feet) 238.0 264.0 291.0	(cubic-feet) 0 394 955	(cubic-feet) 0 394 1,350	<u>(sq-ft)</u> 166 1,235 2,459		
(feet) 35.00 36.00 37.00 37.50 38.00 Device Rou	(sq-ft) 166 681 1,259 1,554 1,856	(feet) 238.0 264.0 291.0 298.0 304.0 vert Outle	(cubic-feet) 0 394 955 702 851 et Devices	(cubic-feet) 0 394 1,350 2,052 2,903	<u>(sq-ft)</u> 166 1,235 2,459 2,819		

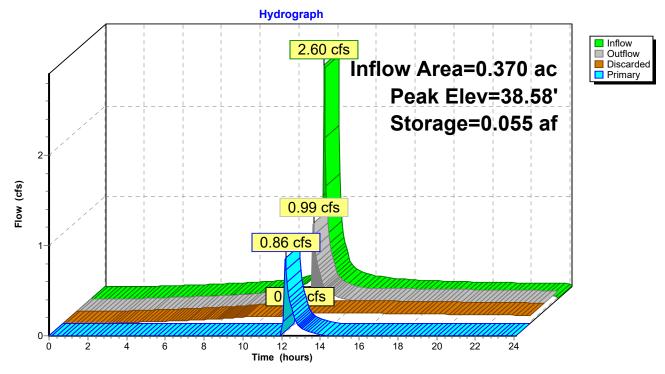
Primary OutFlow Max=2.92 cfs @ 11.96 hrs HW=37.45' (Free Discharge) **1=Orifice/Grate** (Weir Controls 2.92 cfs @ 0.74 fps)

Pond 21SA: Water Quality Basin

Summary for Pond 22SB: Underground 22

Outflow Discarded Primary	= = =	0.370 ac, 78.90% 2.60 cfs @ 12.04 0.99 cfs @ 12.21 0.12 cfs @ 12.21 0.86 cfs @ 12.21 20S : Water Qualit	hrs, Volume= 0.170 af, Atten= 62%, Lag= 10.5 min hrs, Volume= 0.143 af hrs, Volume= 0.028 af			
Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Peak Elev= 38.58' @ 12.21 hrs Surf.Area= 0.072 ac Storage= 0.055 af						
		n time= 156.6 min o . time= 115.6 min (calculated for 0.170 af (93% of inflow) 902.9 - 787.4)			
Volume	Inver	t Avail.Storage	Storage Description			
#1A	37.00	0.034 af	27.00'W x 116.39'L x 2.00'H Field A			
#2A	37.50)' 0.030 af	0.144 af Overall - 0.030 af Embedded = 0.114 af x 30.0% Voids ADS_StormTech SC-160LP +Cap x 192 Inside #1 Effective Size= 18.0"W x 12.0"H => 0.96 sf x 7.12'L = 6.8 cf Overall Size= 25.0"W x 12.0"H x 7.56'L with 0.44' Overlap			

0.064 af Total Available Storage


Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	37.00'	1.000 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 34.00'
#2	Primary	38.40'	4.0' long + 1.0 '/' SideZ x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

192 Chambers in 12 Rows

Discarded OutFlow Max=0.12 cfs @ 12.21 hrs HW=38.57' (Free Discharge) **1=Exfiltration** (Controls 0.12 cfs)

Primary OutFlow Max=0.81 cfs @ 12.21 hrs HW=38.57' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 0.81 cfs @ 1.11 fps)

Pond 22SB: Underground 22

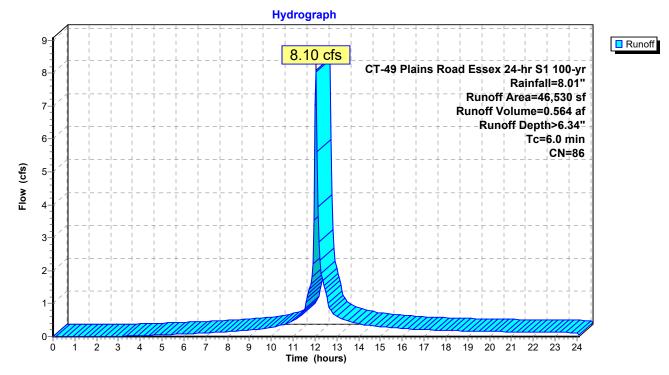
Time span=0.00-24.10 hrs, dt=0.05 hrs, 483 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 20: PRWS 20	Runoff Area=46,530 sf 68.29% Impervious Runoff Depth>6.34" Tc=6.0 min CN=86 Runoff=8.10 cfs 0.564 af
Subcatchment 21: PRWS 21	Runoff Area=17,460 sf 64.15% Impervious Runoff Depth>6.22" Tc=0.0 min CN=85 Runoff=3.63 cfs 0.208 af
Subcatchment 22: PRWS 22	Runoff Area=16,110 sf 78.90% Impervious Runoff Depth>6.81" Tc=6.0 min CN=90 Runoff=2.94 cfs 0.210 af
Pond 20S: Water Quality Basin	Peak Elev=34.74' Storage=11,800 cf Inflow=9.97 cfs 0.816 af Outflow=6.64 cfs 0.750 af
Pond 21SA: Water Quality Basin	Peak Elev=37.46' Storage=1,988 cf Inflow=3.63 cfs 0.208 af Outflow=3.59 cfs 0.208 af
Pond 22SB: Underground 22 Discarded=0.13 cf	Peak Elev=38.67' Storage=0.057 af Inflow=2.94 cfs 0.210 af s 0.149 af Primary=1.55 cfs 0.044 af Outflow=1.68 cfs 0.193 af

Total Runoff Area = 1.839 ac Runoff Volume = 0.982 af Average Runoff Depth = 6.41" 30.48% Pervious = 0.560 ac 69.52% Impervious = 1.278 ac

Summary for Subcatchment 20: PRWS 20

Runoff = 8.10 cfs @ 12.04 hrs, Volume= 0.564 af, Depth> 6.34" Routed to Pond 20S : Water Quality Basin

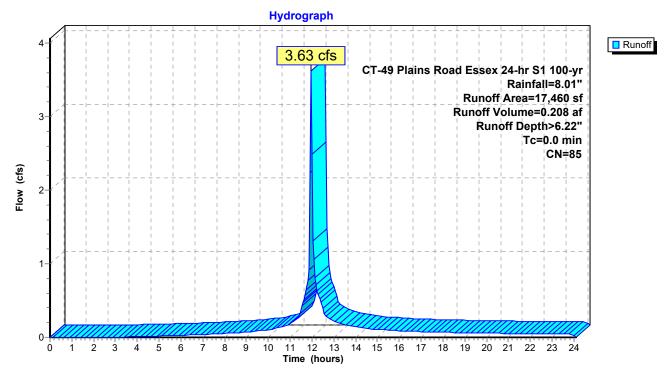

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 100-yr Rainfall=8.01"

Area	i (sf) CN	N Description
14	,755 6 ⁻	1 >75% Grass cover, Good, HSG B
29	,400 98	8 Paved parking, HSG B
2	,375 98	8 Unconnected roofs, HSG B
46	,530 86	6 Weighted Average
14	,755	31.71% Pervious Area
31	,775	68.29% Impervious Area
2	,375	7.47% Unconnected
Tc L	ength S	Slope Velocity Capacity Description
(min)	(feet) ((ft/ft) (ft/sec) (cfs)

(min)	
6.0	

Direct Entry,

Subcatchment 20: PRWS 20

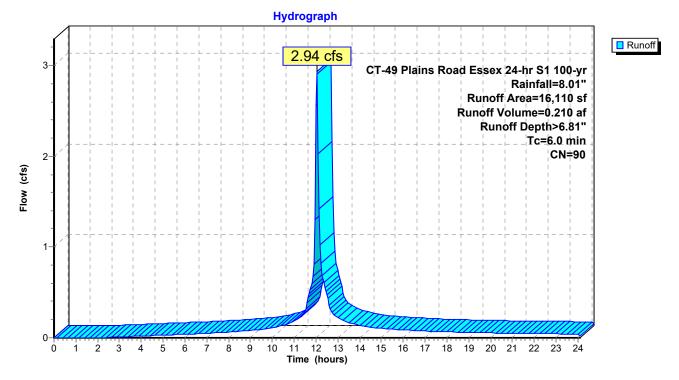

Summary for Subcatchment 21: PRWS 21

Runoff = 3.63 cfs @ 11.95 hrs, Volume= 0.208 af, Depth> 6.22" Routed to Pond 21SA : Water Quality Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 100-yr Rainfall=8.01"

Area (sf)	CN	Description
6,260	61	>75% Grass cover, Good, HSG B
11,200	98	Paved parking, HSG B
17,460	85	Weighted Average
6,260		35.85% Pervious Area
11,200		64.15% Impervious Area

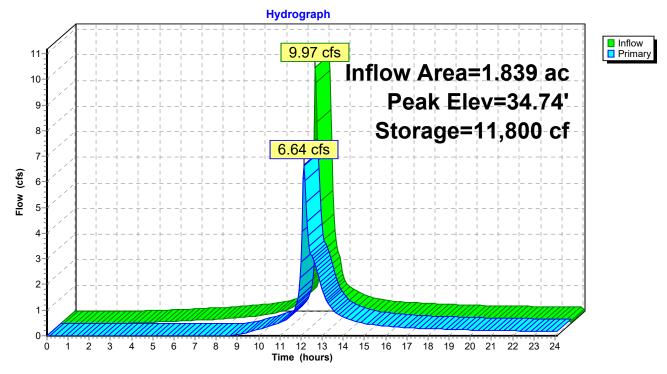
Subcatchment 21: PRWS 21


Summary for Subcatchment 22: PRWS 22

Runoff = 2.94 cfs @ 12.04 hrs, Volume= 0.210 af, Depth> 6.81" Routed to Pond 22SB : Underground 22

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs CT-49 Plains Road Essex 24-hr S1 100-yr Rainfall=8.01"

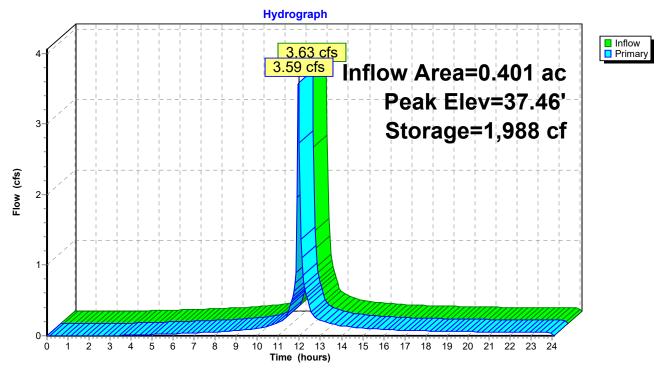
A	rea (sf)	CN	Description					
	12,500	98	8 Roofs, HSG B					
	210	98	Paved park	ing, HSG B	3			
	3,400	61	>75% Gras	s cover, Go	bod, HSG B			
	16,110	90	Weighted A	verage				
	3,400		21.10% Pervious Area					
	12,710		78.90% Impervious Area					
Та	Longth	Cland	Valacity	Consoitu	Description			
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry, MIn. TR-55 TC			


Subcatchment 22: PRWS 22

Summary for Pond 20S: Water Quality Basin

Inflow An Inflow Outflow Primary Route	= = =	9.97 cfs @ 6.64 cfs @	12.02 h 12.15 h 12.15 h	mpervious, Inflow E rs, Volume= rs, Volume= rs, Volume=	0.816 af	r 100-yr event 33%, Lag= 7.8 min	
Starting	Elev= 32.80)' Surf.Area	a= 3,942	= 0.00-24.10 hrs, dt sf Storage= 2,955 ea= 5,178 sf Stora	cf	846 cf above start)	
Center-c	of-Mass det	. time= 51.2	min (84	culated for 0.682 af 6.4 - 795.3)	· · · ·		
<u>Volume</u> #1	<u>Inver</u> 32.00		3,158 cf	Storage Descriptio		h below (Pecale)	
#1	52.00	10	, 100 CI	Custom Stage Da	ita (integuiar)Listet		
Elevatio	on S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
32.0)0	3,450	299.0	0	0	3,450	
33.0	00	4,070	311.0	3,756	3,756	4,108	
34.0)0	4,700	322.0	4,381	8,137	4,746	
35.0	00	5,350	335.0	5,021	13,158	5,501	
Device	Routing	Inve	ert Outle	et Devices			
#1	Primary	34.5	0' 10.0	' long + 0.5 '/' Side	Z x 3.0' breadth I	Broad-Crested Rectang	gular Weir
	-					20 1.40 1.60 1.80 2.0	Ĩ0
				3.00 3.50 4.00 4			
						5 2.64 2.64 2.68 2.68	
				2.81 2.92 2.97 3			
#2	Primary	33.3		" Vert. Orifice/Grat			
			Limit	ed to weir flow at lo	w heads		

Primary OutFlow Max=6.62 cfs @ 12.15 hrs HW=34.74' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 2.95 cfs @ 1.21 fps) 2=Orifice/Grate (Orifice Controls 3.67 cfs @ 4.67 fps)



Pond 20S: Water Quality Basin

Summary for Pond 21SA: Water Quality Basin

Outflow = Primary =	3.63 cfs (3.59 cfs (2) 11.95 h 2) 11.96 h 2) 11.96 h	mpervious, Inflow D rs, Volume= rs, Volume= rs, Volume= Basin	epth > 6.22" for 0.208 af 0.208 af, Atten= ^ 0.208 af	-	
Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Starting Elev= 37.40' Surf.Area= 1,493 sf Storage= 1,899 cf Peak Elev= 37.46' @ 11.96 hrs Surf.Area= 1,528 sf Storage= 1,988 cf (89 cf above start)						
	tention time= 15 ss det. time= 0.6		culated for 0.164 af .8 - 796.2)	(79% of inflow)		
Volume	Invert Ava	il.Storage	Storage Description	า		
#1	35.00'	2,903 cf	Custom Stage Dat	t a (Irregular) Listed	below (Recalc)	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
				-		
(feet) 35.00 36.00	<u>(sq-ft)</u> 166 681	(feet) 238.0 264.0	(cubic-feet) 0 394	(cubic-feet) 0 394	<u>(sq-ft)</u> 166 1,235	
(feet) 35.00 36.00 37.00	<u>(sq-ft)</u> 166 681 1,259	(feet) 238.0 264.0 291.0	(cubic-feet) 0 394 955	(cubic-feet) 0 394 1,350	<u>(sq-ft)</u> 166 1,235 2,459	
(feet) 35.00 36.00 37.00 37.50	(sq-ft) 166 681 1,259 1,554	(feet) 238.0 264.0 291.0 298.0	(cubic-feet) 0 394 955 702	(cubic-feet) 0 394 1,350 2,052	<u>(sq-ft)</u> 166 1,235 2,459 2,819	
(feet) 35.00 36.00 37.00	<u>(sq-ft)</u> 166 681 1,259	(feet) 238.0 264.0 291.0	(cubic-feet) 0 394 955	(cubic-feet) 0 394 1,350	<u>(sq-ft)</u> 166 1,235 2,459	
(feet) 35.00 36.00 37.00 37.50	(sq-ft) 166 681 1,259 1,554 1,856	(feet) 238.0 264.0 291.0 298.0 304.0 vert Outle	(cubic-feet) 0 394 955 702 851 et Devices	(cubic-feet) 0 394 1,350 2,052 2,903	<u>(sq-ft)</u> 166 1,235 2,459 2,819	

Primary OutFlow Max=3.39 cfs @ 11.96 hrs HW=37.46' (Free Discharge) **1=Orifice/Grate** (Weir Controls 3.39 cfs @ 0.78 fps)

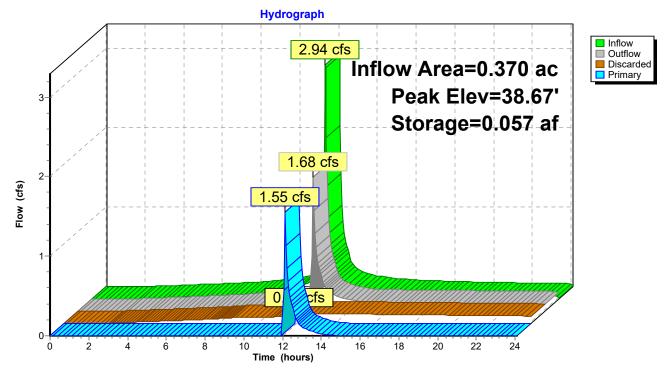
Pond 21SA: Water Quality Basin

Summary for Pond 22SB: Underground 22

Outflow = Discarded = Primary =	= 2 = 1 = 0 = 1	0.370 ac, 78.90% .94 cfs @ 12.04 .68 cfs @ 12.15 .13 cfs @ 12.15 .55 cfs @ 12.15 OS : Water Quality	hrs, Volume= 0.193 af, Atten= 43%, Lag= 6.6 min hrs, Volume= 0.149 af hrs, Volume= 0.044 af			
	Routing by Stor-Ind method, Time Span= 0.00-24.10 hrs, dt= 0.05 hrs Peak Elev= 38.67' @ 12.15 hrs Surf.Area= 0.072 ac Storage= 0.057 af					
		time= 145.2 min c time= 98.0 min (8	alculated for 0.192 af (91% of inflow) 381.1 - 783.1)			
Volume	Invert	Avail.Storage	Storage Description			
#1A	37.00'	0.034 af	27.00'W x 116.39'L x 2.00'H Field A			
#2A	37.50'	0.030 af	0.144 af Overall - 0.030 af Embedded = 0.114 af x 30.0% Voids ADS_StormTech SC-160LP +Cap x 192 Inside #1 Effective Size= 18.0"W x 12.0"H => 0.96 sf x 7.12'L = 6.8 cf			

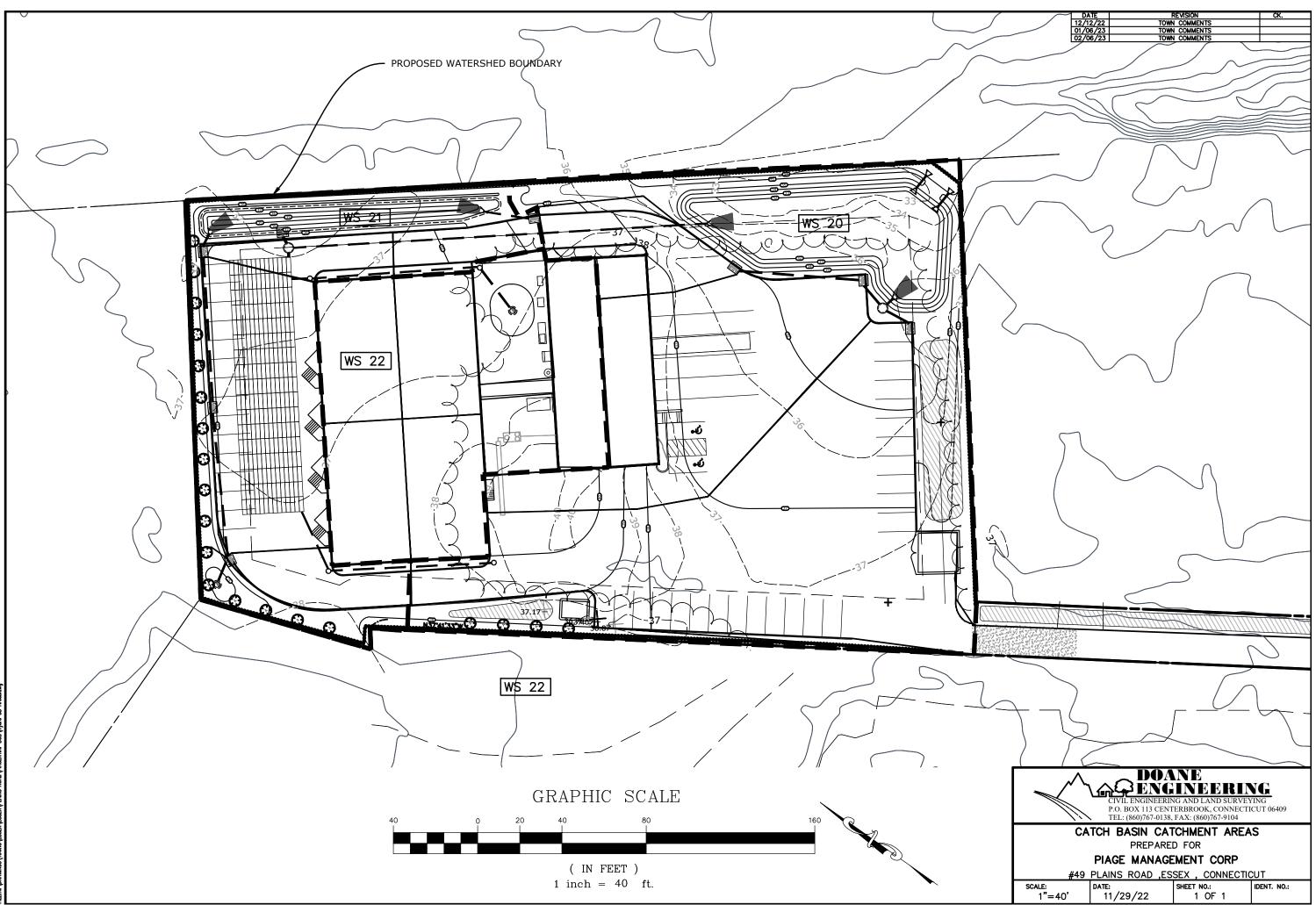
0.064 af Total Available Storage

Storage Group A created with Chamber Wizard


Device	Routing	Invert	Outlet Devices
#1	Discarded	37.00'	1.000 in/hr Exfiltration over Wetted area Conductivity to Groundwater Elevation = 34.00'
#2	Primary	38.40'	4.0' long + 1.0 '/' SideZ x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

192 Chambers in 12 Rows

Overall Size= 25.0"W x 12.0"H x 7.56'L with 0.44' Overlap


Discarded OutFlow Max=0.13 cfs @ 12.15 hrs HW=38.66' (Free Discharge) **1=Exfiltration** (Controls 0.13 cfs)

Primary OutFlow Max=1.55 cfs @ 12.15 hrs HW=38.66' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 1.55 cfs @ 1.37 fps)

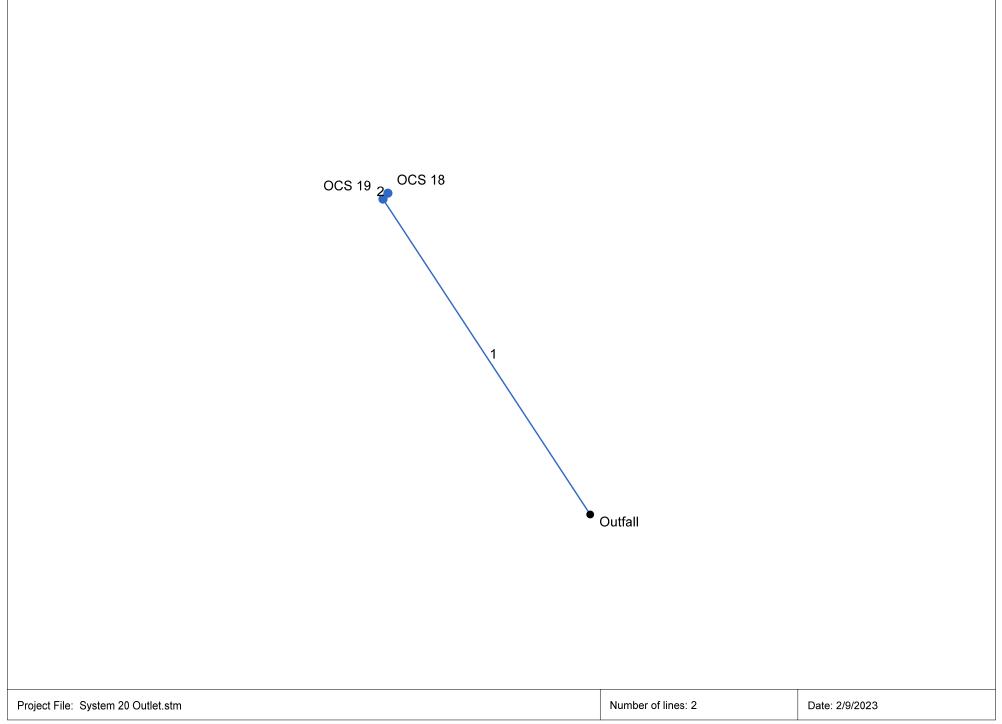
Pond 22SB: Underground 22

<u>Appendix C</u> Pipe Capacity Calculations

e.r. \drawnics\towns\essex\essex\plans road\plagentni-bob\hydro cb *m*

Rational Method Individual Basin Calculations

Basin Name	Impervious Area C=0.9 (sf)	Grass Area C=0.3 (sf)	Wooded Area C=0.2 (sf)	Total Area (sf)	Total Area (ac)	Weighted C	Tc to Inlet (min)
CCB 3	9,950	0	0	9,950	0.23	0.90	5.0
CCB 4	2,610	250	0	2,860	0.07	0.85	5.0
CLCB 5	19,000	0	0	19,000	0.44	0.90	5.0
CCB 9	1,176	175	0	1,351	0.03	0.82	5.0
CCB 15	1,275	175	0	1,450	0.03	0.83	5.0
CCB 16	7,088	0	0	7,088	0.16	0.90	5.0
CCB 17	1,668	175	0	1,843	0.04	0.84	5.0
YD 17A	0	1500	0	1,500	0.03	0.30	5.0
YD 11A	2,660	3320	0	5,980	0.14	0.57	5.0


Catch Basin and Area Drain Runoff Coefficients

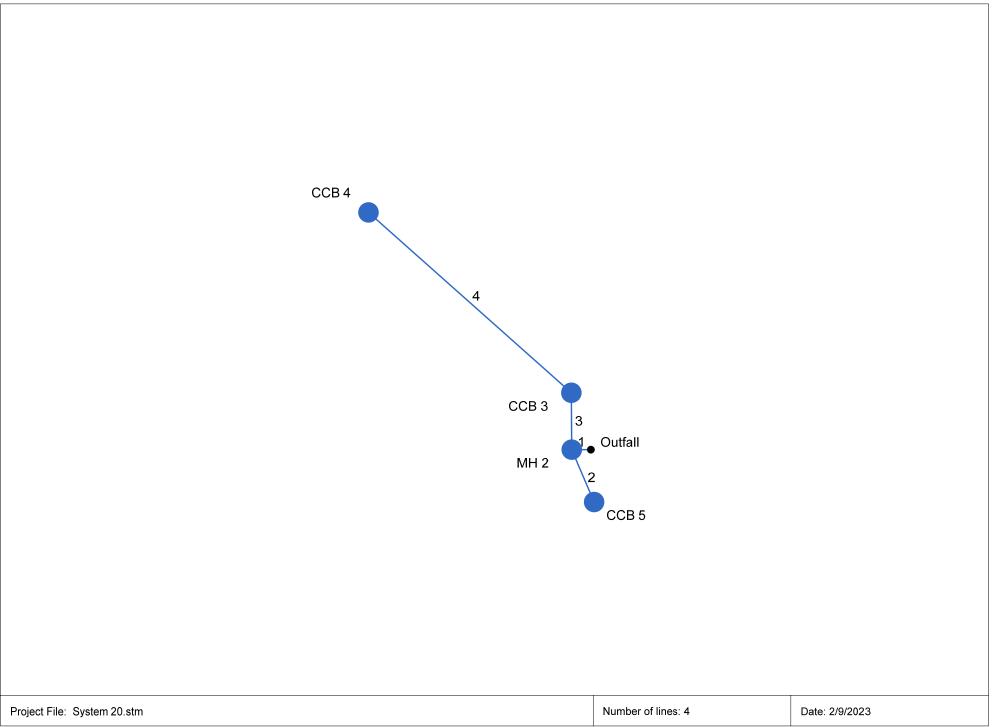
Roof Drainage Pipe Calculations

 $Q = C \times I \times A$, Where: C = Runoff Coefficient I = Rainfall Intensity (in/hr) A = Area (acres)Q = Flow (cfs)

	MH 9	MH 10	MH 11	MH 12
С	0.90	0.90	0.90	0.90
	8.83	8.83	8.83	8.83
A	0.06	0.06	0.06	0.06
Q	0.48	0.48	0.48	0.48

System 20 OCS 100 YR

Storm Sewer Inventory Report


Line		Align	ment			■ Flow	/ Data					Physical	Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	196.000	-123.199	€МН	1.55	0.00	0.00	0.0	32.50	0.77	34.00	15	Cir	0.013	0.96	39.90	OCS 19-FES 20
2	1	4.000	72.809	МН	3.59	0.00	0.00	0.0	34.00	5.00	34.20	15	Cir	0.013	1.00	37.40	OCS 18-OCS 19
Systen	n 20 OCS	100 YR										Number o	f lines: 2			Date: 2	/9/2023

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс			Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	ev	Grnd / R	im Elev	Line ID
ine	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	196.000	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	5.14	5.65	4.19	15	0.77	32.50	34.00	34.74	35.98	33.75	39.90	OCS 19-FES 20
2	1	4.000	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	3.59	14.44	2.93	15	5.00	34.00	34.20	36.24	36.26	39.90	37.40	OCS 18-OCS 19
Syste	em 20 (DCS 100) YR													Numbe	r of lines:	2		Run Da	ate: 2/9/20	23
				nlet time	+ 3.60)	^ 0.70;	Return p	period =\	/rs. 100	; c = cir	· e = ell	p b = bo	x									

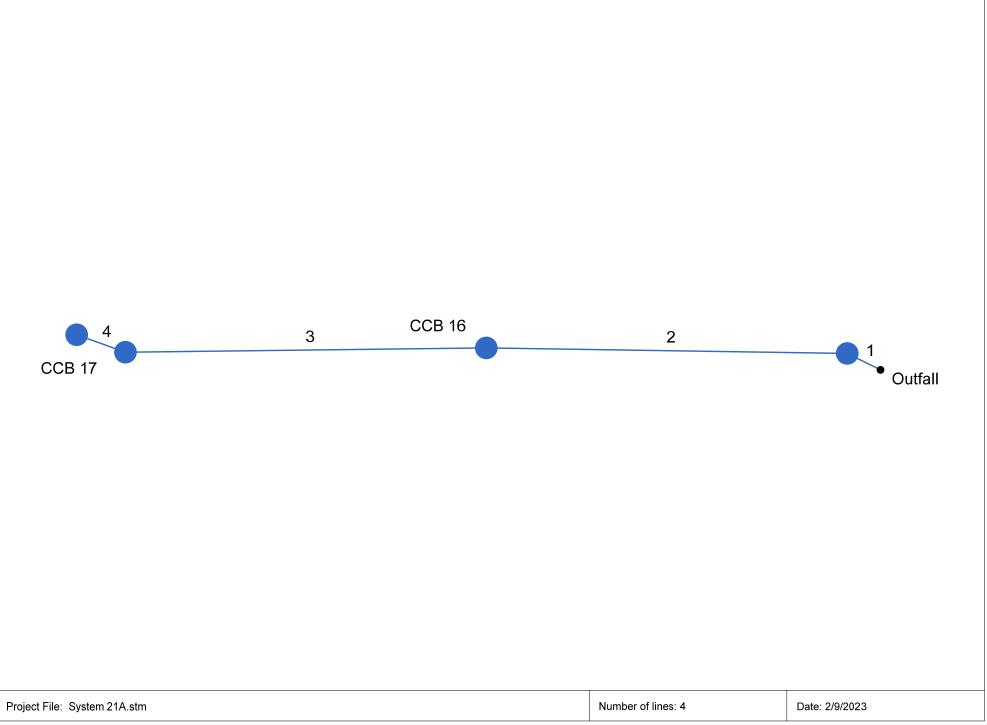
Hydraulic Grade Line Computations

_ine	Size	Q			D	ownstre	eam				Len				Upsti	eam				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)		Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	loss (ft)
1	15	5.14	32.50	34.74	1.25	1.23	4.19	0.27	35.01	0.634	196.00	034.00	35.98	1.25	1.23	4.19	0.27	36.25	0.634	0.634	1.242	0.96	0.26
2	15	3.59	34.00	36.24	1.25	1.23	2.93	0.13	36.38	0.309	4.000	34.20	36.26	1.25	1.23	2.93	0.13	36.39	0.309	0.309	0.012	1.00	0.13
Syst	em 20 O	CS 100 `	ŕR												lumber o	f lines: 2	2		Rur	Date: 2	2/9/2023		

Storm Sewer Inventory Report

Line		Align	ment			Flow	v Data					Physical	Data				Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	4.000	180.000	мн	0.00	0.00	0.00	0.0	32.30	5.00	32.50	15	Cir	0.013	1.00	35.80	MH2-FES1
2	1	12.000			0.00	0.44	0.90	5.0	32.50	1.67	32.70	15	Cir	0.013	1.00	35.40	CCB 5-MH 2
3	1	12.000			0.00	0.23	0.90	5.0	32.50	1.67	32.70	15	Cir	0.013	1.17	35.80	CCB 3-MH 2
4	3	57.000	-47.735	Comb	0.00	0.07	0.85	5.0	32.70	1.93	33.80	15	Cir	0.013	1.00	36.10	CCB 4-CCB 3
Syste	m 20 25 YE	3										Number c	of lines: 4			Date: 2	/9/2023
Syste	m 20 25 YF	२										Number o	of lines: 4			Date: 2	/9/2023

Storm Sewer Tabulation


tatio	า	Len	Drng A	rea	Rnoff	Area x	C	Тс			Total flow	Сар	Vel	Pipe		Invert E	lev	HGL Ek	ev	Grnd / R	lim Elev	Line ID
ine	To		Incr	Total	_coeff	Incr	Total	Inlet	Syst	-(I)	now	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
	End	4.000	0.00	0.74	0.00	0.00	0.66	0.0	7.2	7.5	4.98	14.44	4.06	15	5.00	32.30	32.50	34.49	34.51	33.25	35.80	MH2-FES1
	1	12.000	0.44	0.44	0.90	0.40	0.40	5.0	5.0	8.8	3.49	8.34	2.84	15	1.67	32.50	32.70	34.77	34.80	35.80	35.40	CCB 5-MH 2
	1	12.000	0.23	0.30	0.90	0.21	0.27	5.0	7.1	7.6	2.02	8.34	1.64	15	1.67	32.50	32.70	34.77	34.78	35.80	35.80	CCB 3-MH 2
	3	57.000	0.07	0.07	0.85	0.06	0.06	5.0	5.0	8.8	0.52	8.97	0.45	15	1.93	32.70	33.80	34.83	34.83	35.80	36.10	CCB 4-CCB 3
ste	em 20 2	25 YR					•									Numbe	er of lines:	4		Run D	ate: 2/9/20	

Inlet Report

ne o	Inlet ID	Q = CIA	Q carry	Q	Q Byp	Junc	Curb l	nlet	Gra	ate Inlet				G	utter					Inlet		Byp Lin
)		(cfs)	(cfs)	capt (cfs)	вур (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
	MH 2	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
:	CCB 5	3.49	0.00	3.49	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.00	0.010	0.010	0.000	0.37	36.70	0.37	36.70	0.0	Off
	CCB 3	1.82	0.26	2.09	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.00	0.010	0.010	0.000	0.26	26.32	0.26	26.32	0.0	Of
	CCB 4	0.52	0.00	0.26	0.26	Comb	4.0	2.73	0.00	2.31	1.35	0.010	2.00	0.010	0.010	0.013	0.08	8.07	0.06	6.24	0.0	3
etor	m 20 25 YR		-	-		-	-							Number	of lines:	4		F	Run Date	2/9/2023	3	

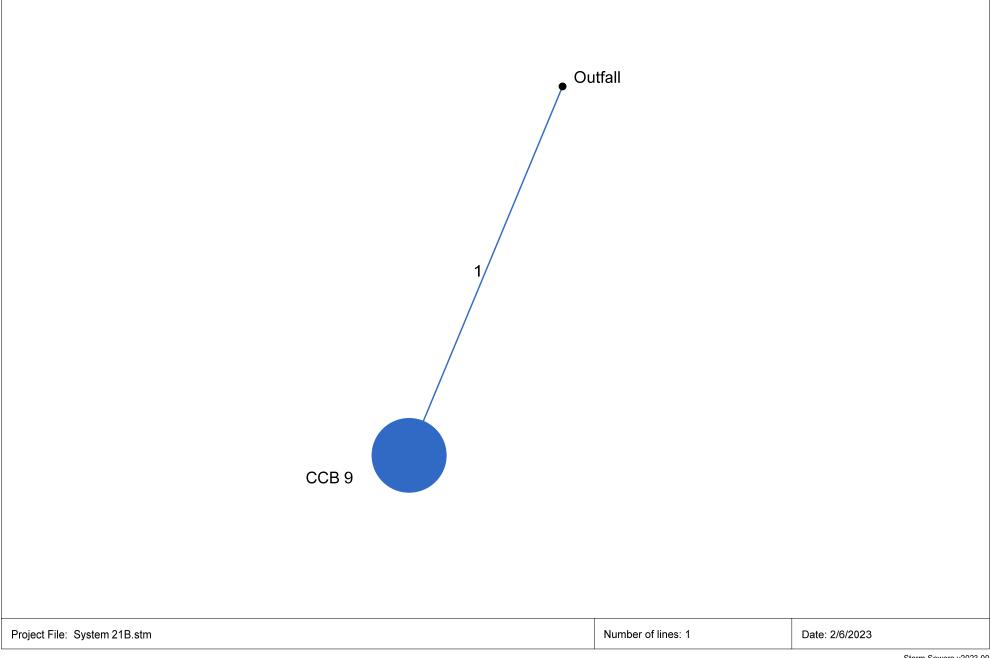
Hydraulic Grade Line Computations

.ine	Size	Q			D	ownstr	eam				Len				Upst	ream				Chec	k	JL	Mino
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	- coeff (K)	loss (ft)
1	15	4.98	32.30	34.49	1.25	1.23	4.06	0.26	34.75	0.595	4.000	32.50	34.51	1.25	1.23	4.06	0.26	34.77	0.594	0.594	0.024	1.00	0.26
2	15	3.49	32.50	34.77	1.25	1.23	2.84	0.13	34.90	0.291	12.000	32.70	34.80	1.25	1.23	2.84	0.13	34.93	0.291	0.291	0.035	1.00	0.13
3	15	2.02	32.50	34.77	1.25	1.23	1.65	0.04	34.81	0.098	12.000	32.70	34.78	1.25	1.23	1.64	0.04	34.82	0.098	0.098	0.012	1.17	0.05
4	15	0.52	32.70	34.83	1.25	1.23	0.43	0.00	34.83	0.007	57.000	33.80	34.83	1.03	1.09	0.48	0.00	34.84	0.006	0.007	0.004	1.00	0.00
Syst	tem 20 25	YR												N	lumber o	of lines: 4	1		Rur	Date: 2	2/9/2023		

Storm Sewer Inventory Report

	Align	ment			Flow	v Data					Physical	Data				Line ID
Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
End	7.000	-153.53	8 MH	0.00	0.03	0.83	5.0	35.10	1.43	35.20	12	Cir	0.013	0.49	38.40	CCB 15-FES 14
1	68.000	-25.581	Comb	0.00	0.16	0.90	5.0	35.20	0.59	35.60	12	Cir	0.013	0.50	38.40	CCB 16-CCB 15
2	68.000	-1.565	Comb	0.00	0.04	0.84	5.0	35.60	0.59	36.00	12	Cir	0.013	0.61	38.40	CCB 17-CCB 16
3	9.768	20.530	DrGrt	0.00	0.03	0.30	5.0	36.00	1.02	36.10	6	Cir	0.011	1.00	36.80	YD 17A-CCB 17
21A 25 `	YR										Number c	of lines: 4			Date: 2	/9/2023
21A 25 Y	/R										Number c	of lines: 4			Date: 2	/9/2023
	Line No.	Dnstr Line No.Line Length (ft)End7.000168.000268.000	Line Length (deg) End 7.000 -153.538 1 68.000 -25.581 2 68.000 -1.565 3 9.768 20.530	Dnstr No.Line Length (ft)Defl angle (deg)Junc TypeEnd7.000-153.538MH168.000-25.581Comb268.000-1.565Comb39.76820.530DrGrt	AlignmentManual ConstructionLine Length angle (deg)Junc TypeKnown Q (cfs)End7.000-153.538MH0.00168.000-25.581Comb0.00268.000-1.565Comb0.0039.76820.530DrGrt0.00	AlignmentFlowDnstr Line No.Line Length (ft)Defl angle (deg)Junc TypeKnown Q (cfs)Drng Area (ac)End7.000-153.538MH0.000.03168.000-25.581Comb0.000.16268.000-1.565Comb0.000.0439.76820.530DrGrt0.000.031GGGG0.0439.76820.530DrGrt0.000.03	Image: No. Line graph length of the length No. Defligge of the length o	Distriction Line (ft) Defig (deg) Junc (ft) Known (ft) Runoff (ft) Inlet (ft) End 7.000 -153.538 MH 0.00 0.03 0.83 5.0 1 68.000 -25.581 Comb 0.00 0.16 0.90 5.0 2 68.000 -1.565 Comb 0.00 0.03 0.84 5.0 3 9.768 20.530 DrGrt 0.00 0.03 0.30 5.0	Line No. Ling Length (ft) Defl adge (deg) Junc Type Known Q (fs) Drag Acc Runoff Coeff (C) Inlet Time (min) Invert EI Dn (ft) End 7.000 -153.533 MH 0.00 0.03 0.83 5.0 35.10 1 58.000 -25.581 Comb 0.00 0.16 0.90 5.0 35.20 2 68.000 -1.565 Comb 0.00 0.03 0.83 5.0 35.60 3 9.768 20.530 DrGrt 0.00 0.03 0.30 5.0 36.00	Alignment Flow Data Innert Line Length (ft) Defl angle (fg) Junc Type Known Q (cfs) Rreg (ac) Coeff (ff) Innert Time (ff) Line Slope (%) End 7.000 -153.538 MH 0.00 0.03 0.83 5.0 35.10 1.43 1 68.000 -25.581 Comb 0.00 0.16 0.90 5.0 35.20 0.59 2 68.000 -1.565 Comb 0.00 0.04 0.84 5.0 35.60 0.59 3 9.768 20.530 DrGrt 0.00 0.03 0.30 5.0 36.00 1.02	Alignment Flow Data Interpret Flow Bata Interpre	Line Line No. Line Length (t) Defl (t) Junc Type (t) Known Q (cfs) Drag A(ac) Runoff (c) Inter Time (c) Invert (t) Line Stope (t) Invert (t) Line Stope (t) Invert (t) Line Stope (t) Invert (t) Line Stope (t) Invert (t) Line (t) Invert (t) Invert (t) Line (t) Invert (t) Invert (t) Line (t) Invert (t) Invert	Line Line No. Line Length (rft) Dafle Type (de) Junc Type (de) Known Q (cfs) Drag Area (cs) Runoff Coff Inite Time (ff) Invert Line (ff) Line Slope (ff) Invert Up (ff) Line Slope (ff) Invert Up (ff) Line Slope (ff) Invert Slope (ff) Line Slope (ff) Invert Slope (ff) Line Slope (ff) Invert Slope (ff) Line Slope (ff) Line Slope (ff) Line Slope (ff) Line Slope (ff) Line Slope (ff) Line Slope (ff) Line Slope Line (ff) Line Slope Line Slope Line (ff) Line Slope Line Slope Line (ff) Line Slope Line (ff) Line Slope Line (ff) Line Slope Line (ff) Line Slope Line (ff)	Image: No. Image: State St	Alternet Flow Data Intert Coeff Line Length (etcg) Daft (etcg) Line (etcg) Number (etcg) <td>U Flow Date U</td>	U Flow Date U

Storm Sewer Tabulation


tatio	า	Len	Drng A	rea	Rnoff	Area >	(C	Тс			Total	Сар	Vel	Pipe		Invert E	lev	HGL E	ev	Grnd / R	im Elev	Line ID
ine	То		Incr	Total	- coeff	Incr	Total	Inlet	Syst	-(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
	End	7.000	0.03	0.26	0.83	0.02	0.21	5.0	8.5	6.9	1.47	4.26	1.87	12	1.43	35.10	35.20	37.45	37.46	36.10	38.40	CCB 15-FES 1
2	1	68.000	0.16	0.23	0.90	0.14	0.19	5.0	7.9	7.2	1.35	2.73	1.71	12	0.59	35.20	35.60	37.49	37.59	38.40	38.40	CCB 16-CCB 1
	2	68.000	0.04	0.07	0.84	0.03	0.04	5.0	5.4	8.5	0.36	2.73	0.46	12	0.59	35.60	36.00	37.61	37.62	38.40	38.40	CCB 17-CCB 1
ŀ	3	9.768	0.03	0.03	0.30	0.01	0.01	5.0	5.0	8.8	0.08	0.67	0.40	6	1.02	36.00	36.10	37.62	37.62	38.40	36.80	YD 17A-CCB 1
vste	em 21A	4 25 YR														Numbe	er of lines:	4		Run Da		123

Inlet Report

ne o	Inlet ID	Q = CIA	Q carry	Q capt	Q Byp	Junc	Curb I	nlet	Gra	ate Inlet				G	utter					Inlet		Byp Lin
D		(cfs)		(cfs)	вур (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1		0.22	0.00	0.00	0.22	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
2	CCB 16	1.27	0.00	1.27	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.00	0.028	0.028	0.000	0.21	7.43	0.21	7.43	0.0	Off
5	CCB 17	0.30	0.00	0.30	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.00	0.028	0.028	0.000	0.09	3.39	0.09	3.39	0.0	Off
1		0.08	0.00	0.08	0.00	DrGrt	4.0	4.00	2.00	2.00	2.00	Sag	2.00	0.050	0.020	0.013	0.02	4.21	0.02	4.21	0.0	3
ste	m 21A 25 YR													Number	r of lines:	: 4		F	Run Date	2/9/2023	3	

Hydraulic Grade Line Computations

ine Size	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL coeff	Mino		
	(in)				Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)		Ave Sf (%)	Enrgy Ioss (ft)	(K)	loss (ft)
1	12	1.47	35.10	37.45	1.00	0.79	1.87	0.05	37.50	0.170	7.000	35.20	37.46	1.00	0.79	1.87	0.05	37.52	0.170	0.170	0.012	0.49	0.03		
2	12	1.35	35.20	37.49	1.00	0.79	1.72	0.05	37.53	0.143	68.000	35.60	37.59	1.00	0.79	1.71	0.05	37.63	0.143	0.143	0.097	0.50	0.02		
3	12	0.36	35.60	37.61	1.00	0.79	0.46	0.00	37.61	0.010	68.000	36.00	37.62	1.00	0.79	0.46	0.00	37.62	0.010	0.010	0.007	0.61	0.00		
4	6	0.08	36.00	37.62	0.50	0.20	0.40	0.00	37.62	0.014	9.768	36.10	37.62	0.50	0.20	0.40	0.00	37.62	0.014	0.014	0.001	1.00	0.00		
	tem 21A 2														umber c					Date: 2					

Flow Data Alignment Physical Data Line No. Line Known Drng Line Line Line N J-Loss Inlet/ Dnstr Defl Junc Runoff Inlet Invert Invert Line Length angle Туре Q Area Coeff Time El Dn Slope EI Up Size Shape Value Coeff Rim El (ft) (%) No. (ft) (deg) (cfs) (C) (min) (ft) (in) (n) (K) (ft) (ac) End 112.279 Comb 0.00 5.0 12 Cir 0.013 1 22.000 0.90 0.44 35.20 1.82 35.60 1.00 37.80 CCB 9-FES 8

Storm Sewer Inventory Report

System 21B 25 YR

Number of lines: 1

Page 1

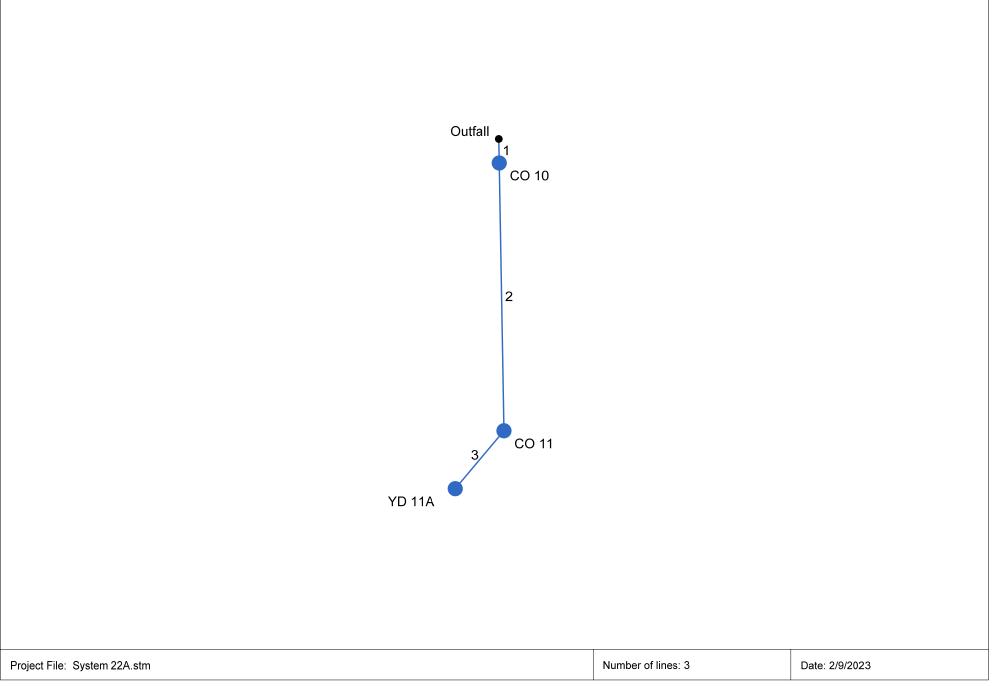
Line ID

Date: 2/6/2023

ation		Len Drng A		rea	Rnoff coeff	f Area x C		с Тс			Total flow	Cap full	Vel	Pipe		Invert Elev		HGL Elev		Grnd / Rim Elev		Line ID
ine	ne To Line		Incr	Total	coen	Incr	Total	Inlet	Syst	-(I)	liow			Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Lille	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
	End	22.000	0.90	0.90	0.44	0.40	0.40	5.0	5.0	8.8	3.49	4.80	4.44	12	1.82	35.20	35.60	37.45	37.66	36.20	37.80	CCB 9-FES 8
yste	em 21E	8 25 YR	,					•								Number	r of lines: '	1		Run Da	te: 2/6/20	23

Storm Sewer Tabulation

Page 1


Inlet ID Line Q = Q Q Q Junc Curb Inlet Grate Inlet Gutter Inlet Вур No CIA carry capt Вур Туре Line Depr w Depth Spread Depth Spread Ht Area So W Sw L L Sx n No (ft/ft) (cfs) (cfs) (cfs) (cfs) (in) (ft) (sqft) (ft) (ft) (ft/ft) (ft) (ft/ft) (ft) (ft) (ft) (ft) (in) 1 CCB 9 3.49 0.00 2.10 4.0 2.73 0.00 2.31 0.040 2.00 0.010 0.010 0.013 0.13 12.67 0.10 10.49 0.0 Off 1.38 Comb 1.35 System 21B 25 YR Run Date: 2/6/2023 Number of lines: 1 NOTES: Inlet N-Values = 0.016; Intensity = 40.94 / (Inlet time + 3.80) ^ 0.71; Return period = 25 Yrs.; * Indicates Known Q added. All curb inlets are Horiz throat.

Inlet Report

Hydraulic Grade Line Computations

ine Size	Q			D	ownstre	am				Len				Upst	ream				Chec	k	JL	Mino	
(in)		(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)		Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy Ioss (ft)	coeff (K)	loss (ft)
1 12	3.49	35.20	37.45	1.00	0.79	4.44	0.31	37.76	0.958	22.000	35.60	37.66	1.00	0.79	4.44	0.31	37.97	0.958	0.958	0.211	1.00	0.31	
System 21B 2	25 YR												N	lumber o	of lines: 1	1		Rur	Date: 2	2/6/2023			

System 22A 25 YR

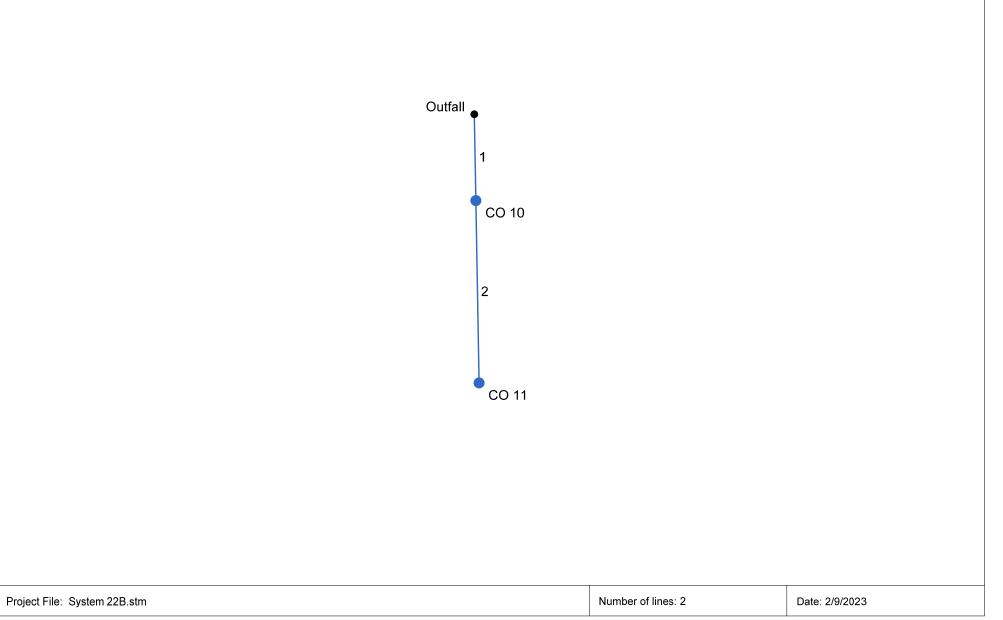
Storm Sewer Inventory Report

Line		Align	ment			Flow	v Data					Physical	Data				Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	7.000	88.960	мн	0.48	0.00	0.00	0.0	37.50	1.43	37.60	8	Cir	0.010	0.15	40.00	CO 10-UG 22SB
2	1	78.000	0.034	мн	0.48	0.00	0.00	0.0	37.60	0.51	38.00	8	Cir	0.010	0.70	40.00	CO 11-CO 10
3	2	22.000	40.954	Grate	0.00	0.14	0.57	5.0	38.00	0.91	38.20	8	Cir	0.010	1.00	39.50	YD 11A-CO 11
Syster	m 22A 25 \	/R										Number c	of lines: 3			Date: 2	/9/2023

Storm Sewer Tabulation

Statio	n	Len	Drng A	Irea	Rnoff	Area x	C	Тс			Total	Сар	Vel	Pipe		Invert E	lev	HGL E	ev	Grnd / F	Rim Elev	Line ID
ine	То	-	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	_
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	7.000	0.00	0.14	0.00	0.00	0.08	0.0	5.6	8.4	1.63	1.88	4.68	8	1.43	37.50	37.60	38.50	38.58	38.50	40.00	CO 10-UG 22SB
2	1	78.000	0.00	0.14	0.00	0.00	0.08	0.0	5.2	8.7	1.17	1.12	3.36	8	0.51	37.60	38.00	38.63	39.06	40.00	40.00	CO 11-CO 10
3	2	22.000	0.14	0.14	0.57	0.08	0.08	5.0	5.0	8.8	0.70	1.50	2.01	8	0.91	38.00	38.20	39.18	39.23	40.00	39.50	YD 11A-CO 11
Syst	em 22A	4 25 YR														Numb	er of lines:	3		Run Da	ate: 2/9/20	23

Inlet Report


ie	Inlet ID	Q = CIA	Q carry	Q capt	Q Byp	Junc Type	Curb I	nlet	Gr	ate Inlet				G	utter					Inlet		Byp Line
		(cfs)		(cfs)	(cfs)	Type	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
	CO 10	0.48*	0.48	0.00	0.96	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
	CO 11	0.48*	0.00	0.00	0.48	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.00	0.00	0.00	0.00	0.0	1
	YD 11A	0.70	0.00	0.70	0.00	Grate	0.0	0.00	2.00	2.00	2.00	Sag	2.00	0.050	0.020	0.013	0.16	5.25	0.16	5.25	0.0	2
																_						
ster	m 22A 25 YR													Number	of lines:	3		F	Run Date	: 2/9/2023		

Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Sf	Enrgy Ioss	coeff (K)	loss (ft)
1	8	1.63	37.50	38.50	0.67	0.35	4.68	0.34	38.84	1.081	7.000	37.60	38.58	0.67	0.35	4.68	0.34	38.92	1.080	1.081	0.076	0.15	0.05
2	8	1.17	37.60	38.63	0.67	0.35	3.36	0.18	38.80	0.558	78.000	38.00	39.06	0.67	0.35	3.36	0.18	39.24	0.558	0.558	0.435	0.70	0.12
3	8	0.70	38.00	39.18	0.67	0.35	2.01	0.06	39.25	0.200	22.000	38.20	39.23	0.67	0.35	2.01	0.06	39.29	0.200	0.200	0.044	1.00	0.06
Syst	tem 22A 2	25 YR												N	umber o	of lines: 3	}		Rur	Date: 2	2/9/2023		

Page 1

System 22B 25 YR

Storm Sewer Inventory Report

Line		Align	ment			• Flow	v Data					Physical	Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Q	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	-
1	End	36.000	88.960	мн	0.48	0.00	0.00	0.0	37.50	0.56	37.70	8	Cir	0.010	0.15	40.00	CO 12-UG 22SB
2	1	76.000	0.034	мн	0.48	0.00	0.00	0.0	37.70	0.66	38.20	8	Cir	0.010	1.00	40.00	CO 13-CO 12
System	n 22B 25 Y	R										Number c	of lines: 2			Date: 2	/9/2023

Storm Sewer Tabulation

tatio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс			Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	ev	Grnd / R	im Elev	Line ID
ine	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	_
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	36.000	0.00	0.00	0.00	0.00	0.00	0.0	0.8	0.0	0.96	1.17	2.75	8	0.56	37.50	37.70	38.50	38.63	38.50	40.00	CO 12-UG 22SI
2	1	76.000	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.48	1.27	1.52	8	0.66	37.70	38.20	38.65	38.71	40.00	40.00	CO 13-CO 12
yste	em 22B	8 25 YR														Numbe	r of lines: :	2		Run Da	ate: 2/9/20	23

Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Sf	Enrgy Ioss	coeff (K)	loss (ft)
1	8	0.96	37.50	38.50	0.67	0.35	2.75	0.12	38.62	0.374	36.000	37.70	38.63	0.67	0.35	2.75	0.12	38.75	0.374	0.374	0.135	0.15	0.02
2	8	0.48	37.70	38.65	0.67	0.35	1.38	0.03	38.68	0.094	76.000	38.20	38.71	0.51	0.29	1.66	0.04	38.76	0.105	0.099	0.076	1.00	0.04
Sve	tem 22B 2	25 VR													umber c	of lines: 2	>		Bur	Date: 2	2/9/2023		
	= cir e =		= box																				

Outlet I.D. FES 1

*Based on Connecticut DOT Drainage Manual, Section 11.13

Description:

FES 1

Design Criteria (25-yr Storm Event):

Q (cfs) = 4.98	R _p (ft)=	1.25
D (in) = 15	$S_{p}(ft) =$	1.25
V (fps) = 4.06	Tw (ft)=	2.19

Q= Flow rate at discharge point in cubic feet per second (cfs)

D= Outlet pipe diameter (in)

V= Flow velocity at discharge point (ft/s)

R_p= Maximum inside pipe rise (ft)

S_p= inside diametere for circular sections of maximum inside pipe span for non-circular sections (ft)

 T_w = Tailwater depth (ft)

Based on **Table 11-13.1** use Type 'B' ---> TW≥ 0.5 Rp

Rip Rap Stone Size:

<u>Velocity</u>	Rip Rap Specification	D ₅₀ Stone Size
0-8 fps	Modified	5 inches

Preformed Scour Hole Dimensions:

$F(ft)=0.5(R_p)$	=	n/a
C(ft)=3.0(S _p)+6.0(F)	=	n/a
$B(ft)=2.0(S_p)+6.0(F)$	=	n/a

L _a	=	10	ft
W1 = $3.0(S_p)$ min.	=	4	ft
W2 = 3.0(Sp)+0.4(La) min.	=	8	ft
d (Depth of Stone)	=	12	inches

Outlet I.D. FES 8

*Based on Connecticut DOT Drainage Manual, Section 11.13

Description:

FES 8

Design Criteria (25-yr Storm Event):

Q (cfs) = 3.49	$R_p(ft)=$	1
D (in) = 12	$S_{p}(ft) =$	1
V (fps) = 4.44	Tw (ft)=	2.25

Q= Flow rate at discharge point in cubic feet per second (cfs)

D= Outlet pipe diameter (in)

V= Flow velocity at discharge point (ft/s)

R_p= Maximum inside pipe rise (ft)

S_p= inside diametere for circular sections of maximum inside pipe span for non-circular sections (ft)

 T_w = Tailwater depth (ft)

Based on **Table 11-13.1** use Type 'B' ---> TW≥ 0.5 Rp

Rip Rap Stone Size:

<u>Velocity</u>	Rip Rap Specification	D ₅₀ Stone Size
0-8 fps	Modified	5 inches

Preformed Scour Hole Dimensions:

$F(ft)=0.5(R_p)$	=	n/a
C(ft)=3.0(S _p)+6.0(F)	=	n/a
B(ft)=2.0(S _p)+6.0(F)	=	n/a

L _a	=	10	ft
W1 = $3.0(S_p)$ min.	=	3	ft
W2 = 3.0(Sp)+0.4(La) min.	=	7	ft
d (Depth of Stone)	=	12	inches

Outlet I.D. FES 14

*Based on Connecticut DOT Drainage Manual, Section 11.13

Description:

FES 14

Design Criteria (25-yr Storm Event):

Q (cfs) = 1.47	$R_p(ft) = 1$	
D (in) = 12	$S_p(ft) = 1$	
V (fps) = 1.87	Tw (ft)= 2.35	5

Q= Flow rate at discharge point in cubic feet per second (cfs)

D= Outlet pipe diameter (in)

V= Flow velocity at discharge point (ft/s)

R_p= Maximum inside pipe rise (ft)

S_p= inside diametere for circular sections of maximum inside pipe span for non-circular sections (ft)

 T_w = Tailwater depth (ft)

Based on **Table 11-13.1** use Type 'B' ---> TW≥ 0.5 Rp

Rip Rap Stone Size:

<u>Velocity</u>	Rip Rap Specification	D ₅₀ Stone Size
0-8 fps	Modified	5 inches

Preformed Scour Hole Dimensions:

$F(ft)=0.5(R_p)$	=	n/a
C(ft)=3.0(S _p)+6.0(F)	=	n/a
$B(ft)=2.0(S_p)+6.0(F)$	=	n/a

L _a	=	10	ft
W1 = $3.0(S_p)$ min.	=	3	ft
W2 = 3.0(Sp)+0.4(La) min.	=	7	ft
d (Depth of Stone)	=	12	inches

Outlet I.D. FES 20

*Based on Connecticut DOT Drainage Manual, Section 11.13

Description:

FES 20

Design Criteria (100-yr Storm Event):

Q (cfs) = 5.14	R _p (ft)=	1.25
D (in) = 15	$S_{p}(ft) =$	1.25
V (fps) = 4.19	Tw (ft)=	2.24

Q= Flow rate at discharge point in cubic feet per second (cfs)

D= Outlet pipe diameter (in)

V= Flow velocity at discharge point (ft/s)

R_p= Maximum inside pipe rise (ft)

S_p= inside diametere for circular sections of maximum inside pipe span for non-circular sections (ft)

 T_w = Tailwater depth (ft)

Based on **Table 11-13.1** use Type 'B' ---> TW≥ 0.5 Rp

Rip Rap Stone Size:

<u>Velocity</u>	Rip Rap Specification	D ₅₀ Stone Size
0-8 fps	Modified	5 inches

Preformed Scour Hole Dimensions:

$F(ft)=0.5(R_p)$	=	n/a
C(ft)=3.0(S _p)+6.0(F)	=	n/a
$B(ft)=2.0(S_p)+6.0(F)$	=	n/a

L _a	=	10	ft
W1 = $3.0(S_p)$ min.	=	4	ft
W2 = 3.0(Sp)+0.4(La) min.	=	8	ft
d (Depth of Stone)	=	12	inches

Appendix D NCRS Soils Information

11/2/2022 Page 1 of 3

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Area of Interest (AOI) Stony Spot Soils Very Stony Spot Soil Map Unit Polygons Wet Spot Soil Map Unit Lines Other Soil Map Unit Points Special Line Features Special Point Features Streams and Canals Blowout Streams and Canals Clay Spot Transportation Clay Spot Herican Clay Spot Herican	MAP	EGEND	MAP INFORMATION
Image: Series of Carvel Pit ✓ US Routes Maps from the Web Soil Survey are based on the Web Maprojection, which preserves direction and shape but distor distance and area. A projection that preserves area, such Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. Image: Marsh or swamp Image: Swamp Image: Swamp	Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Unit Polygon Soil Map Unit Lines Soil Map Unit Points Special Point Features Image: Special Point Point Features Image: Special Point P	 Spoil Area Stony Spot Very Stony Spot Very Stony Spot Very Stony Spot Other Special Line Features Water Features Streams and Canals Transportation Fransportation Rails Interstate Highways US Routes US Routes Major Roads Local Roads Background	The soil surveys that comprise your AOI were mapped at 1:12,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailer scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data of the version date(s) listed below. Soil Survey Area: State of Connecticut Survey Area Data: Version 22, Sep 12, 2022 Soil map units are labeled (as space allows) for map scales

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
221A	Ninigret-Urban land complex, 0 to 5 percent slopes	14.7	74.3%
234B	Merrimac-Urban land complex, 0 to 8 percent slopes	4.0	20.2%
701A	Ninigret fine sandy loam, 0 to 3 percent slopes	1.1	5.5%
Totals for Area of Interest		19.9	100.0%

Appendix E NOAA Atlas 14 Precipitation Information

NOAA Atlas 14, Volume 10, Version 3 Location name: Essex, Connecticut, USA* Latitude: 41.3468°, Longitude: -72.4094° Elevation: 35.92 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

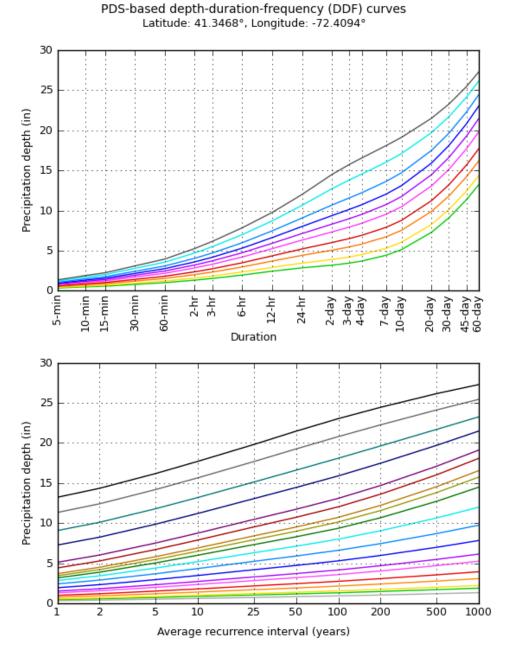
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

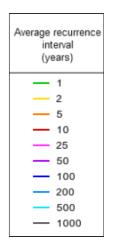
NOAA, National Weather Service, Silver Spring, Maryland

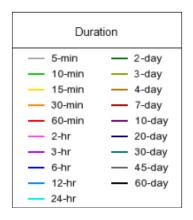
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-	based po	int precipi	itation fre	quency es	timates w	/ith 90% (confiden	ce interva	als (in ind	ches) ¹
Duration				Average	recurrence	interval (ye	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.338 (0.259-0.433)	0.406 (0.310-0.520)	0.517 (0.394-0.665)	0.609 (0.462-0.787)	0.736 (0.542-0.984)	0.831 (0.602-1.13)	0.931 (0.656-1.31)	1.04 (0.700-1.48)	1.21 (0.779-1.76)	1.34 (0.846-1.98)
10-min	0.478 (0.366-0.613)	0.575 (0.440-0.737)	0.733 (0.558-0.943)	0.863 (0.655-1.12)	1.04 (0.768-1.39)	1.18 (0.851-1.60)	1.32 (0.930-1.85)	1.48 (0.991-2.10)	1.71 (1.11-2.49)	1.90 (1.20-2.81)
15-min	0.563 (0.431-0.722)	0.676 (0.517-0.867)	0.861 (0.657-1.11)	1.01 (0.770-1.31)	1.23 (0.904-1.64)	1.39 (1.00-1.88)	1.55 (1.09-2.17)	1.74 (1.17-2.47)	2.01 (1.30-2.93)	2.23 (1.41-3.31)
30-min	0.781 (0.599-1.00)	0.938 (0.718-1.20)	1.20 (0.911-1.54)	1.41 (1.07-1.82)	1.70 (1.25-2.27)	1.92 (1.39-2.61)	2.15 (1.52-3.01)	2.41 (1.62-3.43)	2.78 (1.80-4.06)	3.09 (1.95-4.58)
60-min	1.00 (0.766-1.28)	1.20 (0.919-1.54)	1.53 (1.17-1.97)	1.80 (1.37-2.32)	2.17 (1.60-2.91)	2.46 (1.78-3.34)	2.75 (1.94-3.85)	3.08 (2.07-4.38)	3.56 (2.30-5.19)	3.94 (2.50-5.85)
2-hr	1.31 (1.01-1.67)	1.57 (1.21-2.00)	2.00 (1.53-2.56)	2.35 (1.80-3.02)	2.84 (2.11-3.78)	3.20 (2.34-4.34)	3.59 (2.55-5.01)	4.04 (2.72-5.70)	4.70 (3.05-6.81)	5.26 (3.34-7.73)
3-hr	1.52 (1.18-1.93)	1.83 (1.41-2.32)	2.32 (1.79-2.95)	2.73 (2.09-3.49)	3.29 (2.46-4.37)	3.71 (2.72-5.01)	4.16 (2.98-5.80)	4.69 (3.17-6.59)	5.48 (3.56-7.90)	6.14 (3.91-9.00)
6-hr	1.95 (1.52-2.45)	2.33 (1.81-2.94)	2.96 (2.29-3.74)	3.48 (2.68-4.41)	4.19 (3.15-5.52)	4.73 (3.48-6.34)	5.30 (3.81-7.33)	5.98 (4.05-8.32)	6.99 (4.56-9.99)	7.84 (5.00-11.4)
12-hr	2.42 (1.90-3.03)	2.90 (2.28-3.64)	3.69 (2.88-4.63)	4.34 (3.37-5.47)	5.24 (3.95-6.84)	5.90 (4.37-7.85)	6.62 (4.77-9.07)	7.45 (5.07-10.3)	8.70 (5.70-12.3)	9.75 (6.24-14.0)
24-hr	2.85 (2.25-3.54)	3.44 (2.71-4.28)	4.40 (3.46-5.49)	5.20 (4.07-6.51)	6.31 (4.79-8.19)	7.13 (5.31-9.42)	8.01 (5.82-10.9)	9.06 (6.18-12.4)	10.6 (7.00-15.0)	12.0 (7.71-17.1)
2-day	3.18 (2.53-3.92)	3.88 (3.09-4.80)	5.04 (3.99-6.24)	6.00 (4.72-7.46)	7.32 (5.60-9.47)	8.30 (6.24-10.9)	9.36 (6.87-12.8)	10.7 (7.32-14.5)	12.7 (8.39-17.8)	14.5 (9.34-20.5)
3-day	3.44 (2.75-4.23)	4.21 (3.36-5.18)	5.46 (4.34-6.74)	6.50 (5.14-8.05)	7.94 (6.10-10.2)	8.99 (6.78-11.8)	10.1 (7.47-13.8)	11.6 (7.95-15.7)	13.8 (9.12-19.2)	15.8 (10.2-22.2)
4-day	3.70 (2.96-4.53)	4.50 (3.60-5.52)	5.82 (4.64-7.15)	6.91 (5.47-8.53)	8.41 (6.47-10.8)	9.52 (7.19-12.4)	10.7 (7.91-14.5)	12.2 (8.41-16.5)	14.5 (9.62-20.1)	16.6 (10.7-23.2)
7-day	4.41 (3.55-5.38)	5.29 (4.25-6.45)	6.71 (5.38-8.21)	7.90 (6.29-9.69)	9.53 (7.36-12.1)	10.7 (8.13-13.9)	12.0 (8.89-16.1)	13.6 (9.41-18.2)	16.0 (10.6-22.0)	18.1 (11.7-25.2)
10-day	5.12 (4.14-6.21)	6.03 (4.87-7.33)	7.52 (6.05-9.16)	8.76 (7.01-10.7)	10.5 (8.11-13.2)	11.7 (8.90-15.1)	13.1 (9.66-17.4)	14.7 (10.2-19.6)	17.1 (11.4-23.4)	19.1 (12.4-26.5)
20-day	7.27 (5.92-8.76)	8.26 (6.71-9.96)	9.87 (8.00-11.9)	11.2 (9.03-13.6)	13.1 (10.2-16.3)	14.5 (11.0-18.3)	15.9 (11.7-20.7)	17.5 (12.2-23.1)	19.7 (13.2-26.7)	21.5 (14.0-29.5)
30-day	9.08 (7.42-10.9)	10.1 (8.26-12.1)	11.8 (9.60-14.2)	13.2 (10.7-16.0)	15.1 (11.8-18.7)	16.6 (12.6-20.9)	18.1 (13.3-23.2)	19.6 (13.7-25.8)	21.7 (14.6-29.2)	23.3 (15.2-31.8)
45-day	11.3 (9.31-13.5)	12.4 (10.2-14.9)	14.2 (11.6-17.0)	15.7 (12.7-18.8)	17.7 (13.8-21.8)	19.3 (14.7-24.0)	20.8 (15.2-26.4)	22.3 (15.6-29.1)	24.1 (16.2-32.3)	25.4 (16.6-34.6)
60-day	13.2 (10.9-15.8)	14.4 (11.8-17.1)	16.2 (13.3-19.3)	17.7 (14.4-21.2)	19.8 (15.5-24.3)	21.5 (16.4-26.6)	23.0 (16.9-29.0)	24.5 (17.2-31.8)	26.2 (17.7-34.9)	27.3 (17.9-37.0)

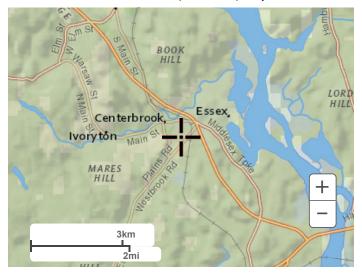

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

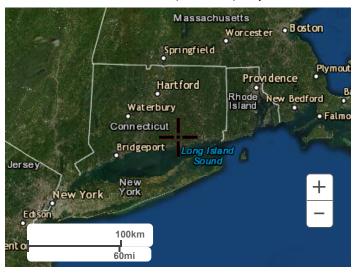

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Fri Apr 15 18:54:18 2022


Back to Top

Maps & aerials

Small scale terrain



Large scale terrain

Large scale map Massachusetts Worcester Boston Springfield 49 Plymouth Providence Hartford B Rhode Connecticu Waterbury New Bedford cticut Island Falmou 84 87 Bridgeport Is and Sound Long Jersey +New York New York 78 Edison 100km en tor 60mi

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

NOAA Atlas 14, Volume 10, Version 3 Location name: Essex, Connecticut, USA* Latitude: 41.3468°, Longitude: -72.4094° Elevation: 35.92 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

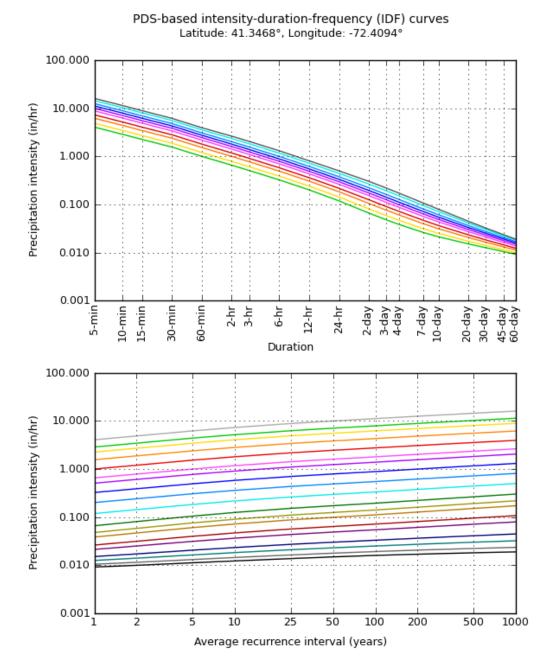
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

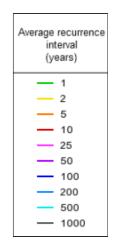
NOAA, National Weather Service, Silver Spring, Maryland

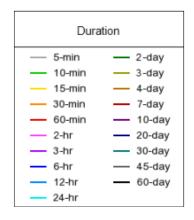
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-	based poi	nt precipi	tation freq	luency es	timates w	ith 90% co	onfidence	intervals	(in inches	/hour) ¹
Duration				Avera	ge recurren	ce interval (y	years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.06	4.87	6.20	7.31	8.83	9.97	11.2	12.5	14.5	16.0
	(3.11-5.20)	(3.72-6.24)	(4.73-7.98)	(5.54-9.44)	(6.50-11.8)	(7.22-13.6)	(7.87-15.7)	(8.40-17.8)	(9.35-21.1)	(10.2-23.8)
10-min	2.87	3.45	4.40	5.18	6.25	7.06	7.91	8.87	10.2	11.4
	(2.20-3.68)	(2.64-4.42)	(3.35-5.66)	(3.93-6.69)	(4.61-8.36)	(5.11-9.61)	(5.58-11.1)	(5.95-12.6)	(6.63-15.0)	(7.19-16.9)
15-min	2.25	2.70	3.44	4.06	4.90	5.54	6.21	6.96	8.04	8.92
	(1.72-2.89)	(2.07-3.47)	(2.63-4.43)	(3.08-5.24)	(3.62-6.56)	(4.01-7.54)	(4.38-8.70)	(4.66-9.89)	(5.20-11.7)	(5.64-13.2)
30-min	1.56	1.88	2.39	2.81	3.40	3.84	4.30	4.82	5.56	6.17
	(1.20-2.00)	(1.44-2.41)	(1.82-3.08)	(2.14-3.64)	(2.51-4.55)	(2.78-5.22)	(3.03-6.03)	(3.23-6.85)	(3.60-8.13)	(3.91-9.16)
60-min	1.00	1.20	1.53	1.80	2.17	2.46	2.75	3.08	3.56	3.94
	(0.766-1.28)	(0.919-1.54)	(1.17-1.97)	(1.37-2.32)	(1.60-2.91)	(1.78-3.34)	(1.94-3.85)	(2.07-4.38)	(2.30-5.19)	(2.50-5.85)
2-hr	0.656	0.786	0.999	1.18	1.42	1.60	1.80	2.02	2.35	2.63
	(0.506-0.835)	(0.606-1.00)	(0.767-1.28)	(0.898-1.51)	(1.05-1.89)	(1.17-2.17)	(1.28-2.51)	(1.36-2.85)	(1.53-3.41)	(1.67-3.87)
3-hr	0.507	0.608	0.773	0.909	1.10	1.24	1.39	1.56	1.83	2.05
	(0.393-0.644)	(0.470-0.772)	(0.595-0.983)	(0.697-1.16)	(0.818-1.46)	(0.905-1.67)	(0.991-1.93)	(1.05-2.19)	(1.19-2.63)	(1.30-3.00)
6-hr	0.325	0.389	0.494	0.581	0.700	0.789	0.885	0.998	1.17	1.31
	(0.253-0.410)	(0.303-0.491)	(0.383-0.624)	(0.448-0.737)	(0.525-0.922)	(0.581-1.06)	(0.636-1.22)	(0.676-1.39)	(0.761-1.67)	(0.835-1.90)
12-hr	0.201	0.241	0.306	0.360	0.435	0.490	0.549	0.619	0.722	0.809
	(0.158-0.252)	(0.189-0.302)	(0.239-0.384)	(0.280-0.454)	(0.328-0.568)	(0.363-0.651)	(0.396-0.753)	(0.421-0.855)	(0.473-1.02)	(0.518-1.17)
24-hr	0.119	0.143	0.183	0.217	0.263	0.297	0.334	0.377	0.444	0.500
	(0.094-0.147)	(0.113-0.178)	(0.144-0.229)	(0.170-0.271)	(0.200-0.341)	(0.221-0.392)	(0.242-0.455)	(0.258-0.518)	(0.291-0.624)	(0.321-0.713)
2-day	0.066	0.081	0.105	0.125	0.153	0.173	0.195	0.222	0.265	0.302
	(0.053-0.082)	(0.064-0.100)	(0.083-0.130)	(0.098-0.155)	(0.117-0.197)	(0.130-0.228)	(0.143-0.266)	(0.152-0.303)	(0.175-0.370)	(0.195-0.427)
3-day	0.048	0.058	0.076	0.090	0.110	0.125	0.141	0.161	0.192	0.219
	(0.038-0.059)	(0.047-0.072)	(0.060-0.094)	(0.071-0.112)	(0.085-0.142)	(0.094-0.164)	(0.104-0.191)	(0.110-0.218)	(0.127-0.266)	(0.141-0.308)
4-day	0.039	0.047	0.061	0.072	0.088	0.099	0.112	0.127	0.152	0.172
	(0.031-0.047)	(0.038-0.058)	(0.048-0.074)	(0.057-0.089)	(0.067-0.112)	(0.075-0.130)	(0.082-0.151)	(0.088-0.172)	(0.100-0.210)	(0.112-0.242)
7-day	0.026	0.031	0.040	0.047	0.057	0.064	0.072	0.081	0.095	0.108
	(0.021-0.032)	(0.025-0.038)	(0.032-0.049)	(0.037-0.058)	(0.044-0.072)	(0.048-0.083)	(0.053-0.096)	(0.056-0.109)	(0.063-0.131)	(0.070-0.150)
10-day	0.021	0.025	0.031	0.037	0.044	0.049	0.055	0.061	0.071	0.080
	(0.017-0.026)	(0.020-0.031)	(0.025-0.038)	(0.029-0.045)	(0.034-0.055)	(0.037-0.063)	(0.040-0.072)	(0.042-0.082)	(0.047-0.097)	(0.052-0.110)
20-day	0.015	0.017	0.021	0.023	0.027	0.030	0.033	0.036	0.041	0.045
	(0.012-0.018)	(0.014-0.021)	(0.017-0.025)	(0.019-0.028)	(0.021-0.034)	(0.023-0.038)	(0.024-0.043)	(0.025-0.048)	(0.027-0.056)	(0.029-0.062)
30-day	0.013	0.014	0.016	0.018	0.021	0.023	0.025	0.027	0.030	0.032
	(0.010-0.015)	(0.011-0.017)	(0.013-0.020)	(0.015-0.022)	(0.016-0.026)	(0.018-0.029)	(0.018-0.032)	(0.019-0.036)	(0.020-0.041)	(0.021-0.044)
45-day	0.010	0.011	0.013	0.014	0.016	0.018	0.019	0.021	0.022	0.024
	(0.009-0.013)	(0.009-0.014)	(0.011-0.016)	(0.012-0.017)	(0.013-0.020)	(0.014-0.022)	(0.014-0.024)	(0.014-0.027)	(0.015-0.030)	(0.015-0.032)
60-day	0.009	0.010	0.011	0.012	0.014	0.015	0.016	0.017	0.018	0.019
	(0.008-0.011)	(0.008-0.012)	(0.009-0.013)	(0.010-0.015)	(0.011-0.017)	(0.011-0.018)	(0.012-0.020)	(0.012-0.022)	(0.012-0.024)	(0.012-0.026)

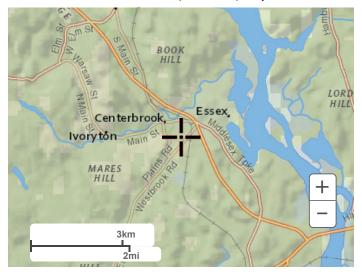

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical


NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Fri Apr 15 18:55:23 2022


Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale map Massachusetts Worcester Boston Springfield 49 Plymouth Providence Hartford B Rhode Connecticu Waterbury New Bedford cticut Island Falmou 84 87 Bridgeport Is and Sound Long Jersey +New York New York 78 Edison 100km en tor 60mi

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

<u>Appendix F</u> Domestic Water Usage Data

Date	Meter Reading Gallons Used	Number of Days	Gallons Per Day
6/6/2019	7000	97	72
9/6/2019	13000	92	141
10/23/2019	5000	47	106
12/6/2019	3000	44	68
3/4/2020	7000	89	79
6/2/2020	8000	90	89
9/4/2020	11000	94	117
12/8/2020	10000	95	105
3/4/2021	13000	86	151
6/4/2021	44000	92	478
9/9/2021	40000	97	412
12/9/2021	7000	91	77
3/7/2022	157000	88	1784
3/9/2022	4000	2	2000
6/7/2022	29000	90	322
9/7/2022	8000	92	87
	Average Gallons Per Day		144

Water Data Usage 49 Plains Road

Appendix G Ground Water Monitoring Data

GROUNDWATER MONITORING Prepared for 49 PLAINS ROAD ESSEX, CT.

TEST HOLE	#4		
ELEVATION TO	P OF PIPE =	40.77'(-3.65')	
ELEVATION OF	GROUND =	37.12'	
DATE GROUNDWATER		SURFACE TO GROUNDWATER	WATER ELEV.
1/21/22	7.80'	4.15'	32.97'
2/2/22	8.20'	4.55'	32.57'
2/11/22	7.80'	4.15'	32.97'
2/22/22	6.80'	3.15'	33.97'
3/4/22	6.70'	3.05'	34.07'
3/15/22	6.70'	3.05'	34.07'
3/29/22	7.00'	3.35'	33.77'
4/18/22	7.20'	3.55'	33.57
5/17/22	7.30'	3.65'	33.47'

TEST HOLE	#3		
ELEVATION TO	P OF PIPE =	40.52'(3.57')	
ELEVATION OF	GROUND =	36.95	
DATE GROUNDWATER		SURFACE TO GROUNDWATER	WATER ELEV.
1/21/22	7.60'	4.03'	32.92'
2/2/22	8.00'	4.43'	32.52'
2/11/22	7.70'	4.13'	32.82
2/22/22	6.80'	3.23'	33.72'
3/4/22	6.90'	3.33'	33.62'
3/15/22	6.60'	3.03'	33.92'
3/29/22	6.90'	3.33'	33.62'
4/18/22	7.10'	3.53'	33.42'
5/17/22	7.30'	3.73'	33.22'

GROUNDWATER MONITORING Prepared for 49 PLAINS ROAD ESSEX, CT.

TEST HOLE	#1		
ELEVATION TO	OP OF PIPE =	40.48'(3.43')	
ELEVATION O	F GROUND =	37.05	
DATE TOP OF PIPE TO GROUNDWATER		SURFACE TO GROUNDWATER	WATER ELEV.
1/21/22	7.80'	4.37'	32.68'
2/2/22	8.30'	4.87'	32.18'
2/11/22	7.10'	3.67'	33.38'
2/22/22	7.00'	3.57'	33.48'
3/4/22	6.90'	3.47'	33.58'
3/15/22	6.90'	3.47'	33.58'
3/29/22	7.10'	3.67'	33.38'
4/18/22	7.30'	3.87'	33.18'
5/17/22	7.40'	3.97'	33.08'

TEST HOLE	#10		
ELEVATION TOP OF PIPE =		39.26(-3.40')	
ELEVATION OF	GROUND =	35.86	
DATE GROUNDWATER		SURFACE TO GROUNDWATER	WATER ELEV.
1/21/22	7.60'	4.20'	31.66'
2/2/22	8.00'	4.60'	31.26'
2/11/22	7.00'	3.60'	32.26'
2/22/22	6.60'	3.20'	32.66'
3/4/22	6.70'	3.30'	32.56'
3/15/22	6.60'	3.20'	32.66'
3/29/22	6.90'	3.50'	32.36'
4/18/22	7.00'	3.60'	32.26'
5/17/22	7.00'	3.60'	32.26'

GROUNDWATER MONITORING Prepared for 49 PLAINS ROAD ESSEX, CT.

TEST HOLE	#9		
ELEVATION TO	P OF PIPE =	38.09'(-1.40')	
ELEVATION OF	GROUND =	37.09	
DATE	TOP OF PIPE TO GROUNDWATER	SURFACE TO GROUNDWATER	WATER ELEV.
1/21/22	6.50'	5.10'	31.99'
2/2/22	6.80'	5.40'	31.69'
2/11/22	6.00'	4.60'	32.49'
2/22/22	6.00'	4.60'	32.49'
3/4/22	6.10'	4.70'	32.39'
3/15/22	5.90'	4.50'	32.59'
3/29/22	6.20'	4.80'	32.29'
4/18/22	6.30'	4.90'	32.19'
5/17/22	6.20'	4.80'	32.29'

<u>Appendix H</u> Soil Infiltration Rates

Permeability Rates

Sample A

No infiltration rate was determined soil was not suitable for Infiltration

Sample B

No infiltration rate was determined soil was not suitable for Infiltration

							n	
Sample	Sample Round	L (inches)	H1 (inches)	H2 (inches)	t (min)	t (hours)	K (in/hr)	K (ft/day)
Sample		(incries)	(incries)	(inches)		(nours)	· · ·	· · · · · · · · · · · · · · · · · · ·
	1	4	16	14.7	1.00	0.017	20.33	40.651
	2	4	14.7	13.5	1.00	0.017	20.43	40.851
	3	4	13.5	12.4	1.00	0.017	20.39	40.772
	4	4	12.4	11.5	1.00	0.017	18.08	36.151
	5	4	11.5	10.6	1.00	0.017	19.55	39.095
C TP 13	6	4	10.6	9.8	1.00	0.017	18.82	37.647
Depth	7	4	9.8	9.1	1.00	0.017	17.78	35.556
38" Trial	8	4	9.1	8.5	1.00	0.017	16.36	32.727
1	9	4	8.5	7.8	1.00	0.017	20.61	41.227
	10	4	7.8	7.3	1.00	0.017	15.89	31.788
	10	4	7.3	6.7	1.00	0.017	20.57	41.143
	10	4	6.7	6.3	1.00	0.017	14.77	29.538
				sample av	/erage		18.631	37.262

Sample C

		L	H1	H2		t	K	
Sample	Sample Round	(inches)	(inches)	(inches)	t (min)	(hours)	(in/hr)	K (ft/day)
	1	4	16	13	2.00	0.033	24.83	49.655
	2	4	13	11	2.00	0.033	20.00	40.000
C TP 13	3	4	11	9.2	2.00	0.033	21.39	42.772
Depth 38" Trial	4	4	9.2	7.7	2.00	0.033	21.30	42.604
2	5	4	7.7	6.4	2.00	0.033	22.13	44.255
				sample a	/erage		21.929	43.857

Sample D

Sample	Sample Round	L (inches)	H1 (inches)	H2 (inches)	t (min)	t (hours)	K (in/hr)	K (ft/day)
	1	5	16	15.1	1.00	0.017	17.36	34.727
	2	5	15.1	14.1	1.00	0.017	20.55	41.096
	3	5	14.1	13.2	1.00	0.017	19.78	39.560
	4	5	13.2	12.4	1.00	0.017	18.75	37.500
D TP	5	5	12.4	11.6	1.00	0.017	20.00	40.000
13 Depth	6	5	11.6	10.9	1.00	0.017	18.67	37.333
38"	7	5	10.9	10.2	1.00	0.017	19.91	39.810
Trial 1	8	5	10.2	9	2.00	0.033	18.75	37.500
	9	5	9	7.9	2.00	0.033	19.53	39.053
	10	5	7.9	7	2.00	0.033	18.12	36.242
				sample av	/erage		19.141	38.282

		L	H1	H2		t	K	
Sample	Sample Round	(inches)	(inches)	(inches)	t (min)	(hours)	(in/hr)	K (ft/day)
D TP 13 Depth 38" Trial 2	1	5	16	13.3	2.00	0.033	27.65	55.290
	2	5	13.3	12.9	2.00	0.033	4.58	9.160
	3	5	12.9	11.6	2.00	0.033	15.92	31.837
	4	5	11.6	10.3	2.00	0.033	17.81	35.616
	5	5	10.3	9.3	2.00	0.033	15.31	30.612
	6	5	9.3	8.4	2.00	0.033	15.25	30.508
	7	5	8.4	7.4	2.00	0.033	18.99	37.975
	8	5	7.4	6.6	2.00	0.033	17.14	34.286
	sample average						16.580	33.161

Sample E

Sample	Sample Round	L (inches)	H1 (inches)	H2 (inches)	t (min)	t (hours)	K (in/hr)	K (ft/day)
Sample		· · · /		, , , , , , , , , , , , , , , , , , ,		/	· · · /	
E TP 14 Depth 30"	1	5	16	15.6	30.00	0.500	0.25	0.506
	2	5	15.6	15.2	30.00	0.500	0.26	0.519
	3	5	15.2	14.7	30.00	0.500	0.33	0.669
	4	5	14.7	14.2	30.00	0.500	0.35	0.692
	5	5	14.2	13.8	30.00	0.500	0.29	0.571
	6	5	13.8	13.5	30.00	0.500	0.22	0.440
	7	5	13.5	13	30.00	0.500	0.38	0.755
	8	5	13	12.3	60.00	1.000	0.28	0.553
	9	5	12.3	10.8	120.00	2.000	0.32	0.649
	sample average						0.298	0.595

Sample F

Sample	Sample Round	L (inches)	H1 (inches)	H2 (inches)	t (min)	t (hours)	K (in/hr)	K (ft/day)
F TP 14 Depth 30"	1	5.25	16	15.1	30.00	0.500	0.61	1.215
	2	5.25	15.1	14.2	30.00	0.500	0.65	1.290
	3	5.25	14.2	13.4	30.00	0.500	0.61	1.217
	4	5.25	13.4	12.5	30.00	0.500	0.73	1.459
	5	5.25	12.5	11.8	30.00	0.500	0.60	1.210
	6	5.25	11.8	11.2	30.00	0.500	0.55	1.096
	7	5.25	11.2	10.5	30.00	0.500	0.68	1.355
	8	5.25	10.5	9.4	60.00	1.000	0.58	1.161
	9	5.25	9.4	7.4	120.00	2.000	0.63	1.250
	sample average						0.625	1.250